• 제목/요약/키워드: Tapered Nozzle

검색결과 13건 처리시간 0.029초

경사노즐 선회분사기의 가솔린 분무 특성 (The Gasoline Spray Characteristics of Tapered Nozzle for a Swirl Injector)

  • 문석수;최재준;배충식
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.11-17
    • /
    • 2007
  • The swirl spray for direct-injection spark-ignition (DISI) engines was investigated using a nozzle whose exit surface shape was cut with a certain tapered angle. The reason for the change in spray's characteristics at various tapered angles was explained by the data correlating the taper and flow angles. The spray tended to shift its characteristics from the symmetric to asymmetric when the tapered angle was increased; furthermore, the spray penetration and spray cone angle were also increased. When the tapered angle was greater than the $90^{\circ}$ minus flow angle, an opened hollow cone spray was formed because of the fuel impingement against the tapered surface area of the nozzle exit. This behavior indicates that the reduction in the air pressure difference between the inner and outer spray of the spray can be achieved. This behavior also promises the potential use of the tapered nozzle for the case where the independence of the spray performance from atmospheric pressure and fuel temperature is desired.

  • PDF

경사노즐 선회분사기의 가솔린 미립화 및 분무 내부 압력 분포 (The Gasoline Atomization Characteristics and Static Pressure Distribution of Tapered Nozzle Swirl Spray)

  • 문석수;최재준;배충식
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.283-291
    • /
    • 2007
  • The static pressure distribution, atomization characteristics and velocity distribution of tapered nozzle swirl spray is analyzed and then compared with original swirl spray. The static pressure distribution inside the swirl spray is measured using a piezoresistive pressure transducer. Phase Doppler anemometry (PDA) is applied to measure and analyze the droplet size and velocity distribution of tapered nozzle and original swirl spray. The static pressure inside the spray shows the lower value compared to the atmospheric pressure and this pressure drop is getting attenuated as the taper angle is increased. The droplet size of tapered nozzle spray shows similar value compared to the original swirl spray at the horizontal mainstream while it shows increased value at vertical mainstream. The deteriorated atomization characteristics of tapered nozzle spray is improved by applying high fuel temperature injection without causing the spray collapse. The velocity results show that the larger portion of fuel is positioned with higher injection velocity, and the smaller portion of fuel is positioned with lower injection velocity with causing spatially non-uniform mixture distribution.

레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발 (Laser Microfabrication of Micro Actuator)

  • 김광열;고상철;박현기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구 (A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector)

  • 김경련;박종호
    • 한국유체기계학회 논문집
    • /
    • 제18권5호
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구 (An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit)

  • 김경련;고재명;박종호
    • 한국유체기계학회 논문집
    • /
    • 제10권6호
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Numerical simulation of bubble growth and liquid flow in a bubble jet micro actuator

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1232-1236
    • /
    • 2014
  • Numerical models of fluid dynamics inside the micro actuator chamber and nozzle are presented. The models include ink flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill process. Since high tapered nozzle is one of the very important parameters for overall actuator performance design. The effects of variations of nozzle thickness, diameter, and taper angles are simulated and some results are compared with the experimental results. It is found that the ink droplet ejection through the thinner and high tapered nozzle is more steady, fast, and robust.

추력방향제어장치인 램 탭의 개념설계 및 성능 연구 (A performance study and conceptual design on the ramp tabs of the thrust vector control)

  • 김경련;고재명;박순종;박종호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

초음속 노즐 출구에 비대칭적으로 설치한 램프 탭의 성능 연구 (A Study on the Performance of Ramp Tabs Asymmetrically Installed in the Supersonic Nozzle Exit)

  • 김경련;고재명;박종호
    • 한국항공우주학회지
    • /
    • 제35권10호
    • /
    • pp.934-939
    • /
    • 2007
  • 추력방향제어는 발사 직후 비행체를 임의의 방향으로 급선회해야 할 경우에 초음속 노즐의 배출가스 방향을 조절하여 측력과 모멘트를 형성시키는 방법이다. 본 연구에서는 압축공기를 이용한 비 연소시험으로 초음속유동 시험장치를 이용하여 기계적 편향판인 램프 탭의 설치위치에 따라 성능연구를 수행하였다. 밀도변화에 따라 유동장을 관찰할 수 있는 쉬리렌 장치를 이용하여 램프 탭 내부에서 발생하는 유동장 구조와 경사충격파의 위치 등을 가시화하였다. 아울러 각 방향에 작용하는 제어 힘, 추력손실 및 표면 압력 분포 등을 도시분석하였다.

Slit-Coater 노즐에서 Photo Resist의 유동 특성 (Flow Characteristics of Photo Resist in a Slit-Coater Nozzle)

  • 김장우
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.37-40
    • /
    • 2004
  • This study presents numerical solutions of three-dimensional laminar flow-field formed by photo resist flow in a slit-coater model. We discuss on the governing equations, laminar viscosities and the computational model applied in our numerical calculation and some results. We prove that the structure of tapered-cavity aid to make uniform pressure-field and boundary effect is an important problem to improve coating uniformity. In view of uniformity improvement, it is necessary to study for the structure of cavity and flow path.

  • PDF