• Title/Summary/Keyword: Target estimation

Search Result 1,201, Processing Time 0.029 seconds

Batch Time Interval and Initial State Estimation using GMM-TS for Target Motion Analysis (GMM-TS를 이용한 표적기동분석용 배치구간 및 초기상태 추정 기법)

  • Kim, Woo-Chan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.285-294
    • /
    • 2012
  • Using bearing measurement only, target motion state is not directly obtained so that TMA (Target Motion Analysis) is needed for this situation. TMA is a nonlinear estimation technique used in passive SONAR systems. Also it is the one of important techniques for underwater combat management systems. TMA can be divided to two parts: batch estimation and sequential estimation. It is preferable to use sequential estimation for reducing computational load as well as adaptively to target maneuvers, batch estimation is still required to attain target initial state vector for convergence of sequential estimation. Selection of batch time interval which depends on observability is critical in TMA performance. Batch estimation in general utilizes predetermined batch time interval. In this paper, we propose a new method called the BTIS (Batch Time Interval and Initial State Estimation). The proposed BTIS estimates target initial status and determines the batch time interval sequentially by using a bank of GMM-TS (Gaussian Mixture Measurement-Track Splitting) filters. The performance of the proposal method is verified by a Monte Carlo simulation study.

Target Range Estimation Method using Ghost Target in the Submarine Linear Array Sonar (잠수함 선배열소나의 허위표적 정보를 이용한 표적의 거리추정 기법)

  • Choi, Byungwoong;Kim, Kyubaek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.532-537
    • /
    • 2015
  • In this paper, we propose target range estimation method using ghost target in the submarine linear array sonar. Usually, when submarine detect target, they use passive sonar detection to avoid self-disclosure by active sonar transmission. But, originally, passive linear array sonar have limitation for target range estimation and additional processing is required to get target range information. For the case of near-field target, typical range estimation method is using multiple information by multipath effect in underwater environment. Acoustic signal generated from target are propagated along with numerous multipath in underwater environment. Since multipath target signals received in the linear array sonar have different conic angles each other, ghost target is appeared at the bearing different with real target bearing and sonar operator can find these information on the operation console. Under several assumption, this geometric properties can be analysed mathematically and we get the target range by derivation of this geometric equations using measured conic angles of real target and ghost target.

A Study on Maximum Likelihood Method for Multi Target Estimation (다중 목표물 추정을 위한 최대 우도 방법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In spatial, desired target direction of arrival estimation is to find a incidental signal direction on receive antennas. In this paper, we were an estimation a desired target direction of arrival using maximum likelihood method. Direction of arrival estimation method estimated a desired target calculating the maximum likelihood sensitivity using singular value decomposition above threshold signals among receive signals in maximum likelihood method. Through simulation, we were analysis a performance to compare existing method and proposal method. In direction of arrival estimation, proposed method is effectivity to decrease processing time because it is not doing an eigen decomposition in direction of arrival estimation, and desired target correctly estimated. We showed that proposal method improve more target estimation than general method.

A Study on Look Error Estimation and Adaptive Array Angle Estimation (지향 오차 추정과 적응 배열 입사방향 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.155-162
    • /
    • 2011
  • It is using to incident angle estimation technique in order to target estimation in radar. This paper was estimated incident angle estimation for target using adaptive array incident angle and single look error incident angle estimation technique. We estimated signal incident angle of target to removal main lobe and side lobe to adaptive array incident angle technique. It is difficult to correctly target estimation because single look technique increase direction error of signal incident angle. In order to receive a desired target signal must be not almost look error between signal incident angle and look angle. we had decreased to occur a look error using delay time and single look condition to calculation a covariance when incident angle estimate. Through simulation, we show that the proposed incident angle estimation technique improves the performance of target estimation compared to previous method.

A New Input Estimation Algorithm for Target Tracking Problem

  • Lee, Hungu;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.323-328
    • /
    • 1998
  • In this paper, a new input estimation algorithm is proposed for target tracking problem. The unknown target maneuver is approximated by a linear combination of independent time functions and the coefficients are estimated by using a weighted least-squares estimation technique. The proposed algorithm is verified by computer simulation of a realistic two-dimensional tracking problem. The proposed algorithm provides significant improvements in estimation performance over the conventional input estimation techniques based on the constant-input assumption.

  • PDF

Target Length Estimation of Target by Scattering Center Number Estimation Methods (산란점 수 추정방법에 따른 표적의 길이 추정)

  • Lee, Jae-In;Yoo, Jong-Won;Kim, Nammoon;Jung, Kwangyong;Seo, Dong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.543-551
    • /
    • 2020
  • In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.

Bearing/Range Estimation Method using NLS Cost Function in IDRS System (IDRS 시스템에서 Curve Fitting이 적용된 NLS 비용함수를 이용한 방위/거리 추정 기법)

  • Jung, Tae-Jin;Kim, Dae-Kyung;Kwon, Bum-Soo;Yoon, Kyung-Sik;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.590-597
    • /
    • 2011
  • The IDRS provides detection, classification and bearing/range estimation by performing wavefront curvature analysis on an intercepted active transmission from target. Especially, a estimate of the target bearing/range that significantly affects the optimal operation of own submarine is required. Target bearing/range can be estimated by wavefront curvature ranging which use the difference of time arrival at sensors. But estimation ambiguity occur in bearing/range estimation due to a number of peaks caused by high center frequency and limited bandwidth of the intercepted active transmission and distortion caused by noise. As a result the bearing/range estimation performance is degraded. To estimate target bearing/range correctly, bearing/range estimation method that eliminate estimation ambiguity is required. In this paper, therefore, for wavefront curvature ranging, NLS cost function with curve fitting method is proposed, which provide robust bearing/range estimation performance by eliminating estimation ambiguity. Through simulation the performance of the proposed bearing/range estimation methods are verified.

Improvement of Target Position Estimation Accuracy for UAV using Kalman Filter (칼만필터를 이용한 무인기의 표적위치 추정 정확도 개선)

  • Oh, Soo-Hun;Kim, Tae-Sik
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.237-244
    • /
    • 2007
  • Estimation of target position is one of the main functions of surveillance UAVs, and is being used to various purposes but generally noisy target position is estimated due to the existence of random measurement errors. In this report, a method of diminishing target position estimation error by calculating target position using Kalman Filtered optimum values such as position, attitude of UAV and sight vector of optical instrument, is proposed.

  • PDF

A Study on Super Resolution Optimum Beam Steering Pattern for Improvement Moving Target Estimation Accuracy (이동 목표물 추정 정확도를 향상시키기 위한 고 분해능 최적 빔 지향 패턴에 관한 연구)

  • Cho, Sung Kuk;Jeon, Byung Kook;Yang, Gill Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.71-78
    • /
    • 2014
  • Method a target estimation in spatial are mobile wireless communication using network cell and GPS. It have much error that mobile wireless communication depend on cell size. GPS method can't find a target in shadow and inner area. In this paper, we estimate a target as direction of arrival method using adaptive array antenna system. Adaptive array antenna system can obtain desired signal to remove other signal This paper studied digital beamforming method in order to estimation a target. Proposed method is modified optimum weight and antenna error correction to estimation an optimal receive signal. Digital beamforming method decided a signal phase and amplitude from received signal on array antenna element. But if it is not to do error correction of received signal, system performance have decreased. Firstly, we proposed modified optimum weight in order to finding desired target. Secondly, we are error correction of antenna incident signals by optimal weight before digital beamforming method. Thirdly, throughly simulation, we showed that system performance of proposed method compare proposal method with general method. It have improved resolution of estimation target to good performance more proposed method than general method.

A Signal Detection of Minimum Variance Algorithm on Linear Constraints

  • Kwan Hyeong Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2023
  • We propose a method for removing interference and noise to estimate target information. In wireless channels, information signals are subject to interference and noise, making it is difficult to accurately estimate the desired signal. To estimate the desired information signal, it is essential to remove the noise and interference from the received signal, extracting only the desired signal. If the received signal noise and interference are not removed, the estimated information signal will have a large error in distance and direction, and the exact location of the target cannot be estimated. This study aims to accurately estimate the desired target in space. The objective is to achieve more presice target estimation than existing methods and enhance target resolution.An estimation method is proposed to improve the accuracy of target estimation. The proposed target estimation method obtains optimal weights using linear constraints and the minimum variance method. Through simulation, the performance of the proposed method and the existing method is analyzed. The proposed method successfully estimated all four targets, while the existing method only estimated two targets. The results show that the proposed method has better resolutiopn and superior estimation capability than the existing method.