• Title/Summary/Keyword: Taylor Number

Search Result 131, Processing Time 0.026 seconds

Numerical Study of Wavy Taylor-Couette Flow(I) -Without an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (I) -축방향 유동이 없는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.697-704
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[J. Fluid Mech., 364, 1998]. They carried out experiment using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When Taylor number increases over the critical one, the flow instability caused by curved streamlines of the tangential flow induces Taylor vortices in the flow direction. As Taylor number further increases over another critical one, the steady Taylor vortices become unsteady and non-axisymmetrically wavy. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

A STUDY ON TAYLOR FLOW ACCORDING TO RADIUS RATION AND ANGULAR VELOCITY (반경비 및 각속도의 변화에 따른 Taylor 유동에 관한 연구)

  • Bae, K.Y.;Kim, H.B.;Chung, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.127-133
    • /
    • 2007
  • This paper represents the numerical study on Taylor flow according to the radius ratio and the angular velocity for flow between tow cylinder. The numerical model is consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8 mm, the numerical parameters are angular velocity and radius ratio. The numerical method is compared with the experimental results by Wereley, and the results are very good agreement. The critical Taylor number is calculated by theoretical and numerical analysis, and the results is showed the difference about ${\pm}10\;%$. As $Re/Re_c$ is increased, Taylor vortex is changed to wavy vortex, and then the wave number for azimuthal direction is increased. Azimuthal wave according to the radius ratio is showed high amplitude and low frequence in case of small radius ratio, and is showed low amplitude and high frequence in case of large radius ratio.

  • PDF

Numerical Study of Radial Temperature Gradient Effect on Taylor Vortices (반경방향으로의 온도구배가 Taylor Vortex에 미치는 영향에 대한 수치적 연구)

  • Kang, Chang-Woo;Yang, Kyung-Soo;Yoon, Dong-Hyeog
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.900-908
    • /
    • 2009
  • Numerical simulation has been carried out to investigate the influence of radial temperature gradient on the Taylor Vortex flow. Varying the Grashof number, we study the detailed flow and temperature fields. The current numerical results show good agreement with the experimental results currently available. It turns out that wavy spiral vortices are generated by increasing temperature gradient. We classify flow patterns for various Grashof numbers based on the characteristics of flow fields and spiral vortices. The correlation between Grashof number with wave number shows that the spiral angle and size of Taylor vortices increase with increasing temperature gradient. Temperature gradient does not have a great influence on the heat transfer rate of the cylinder surfaces.

Three-dimensional Fluid Flow Analysis in Taylor Reactor Using Computational Fluid Dynamics (CFD를 이용한 테일러 반응기의 3차원 유동해석)

  • Kwon, Seong Ye;Lee, Seung-Ho;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.448-453
    • /
    • 2017
  • We conducted the three-dimensional fluid flow analysis in a Taylor reactor using computational fluid dynamics (CFD). The Taylor flow can be categorized into five regions according to Reynolds number, i.e., circular Couette flow (CCF), Taylor vortex flow (TVF), wavy vortex flow (WVF), modulated wavy vortex flow (MWVF), and turbulent Taylor vortex flow (TTVF), and we investigated the flow characteristics at each region. For each region, the shape, number and length of vortices were different and they influenced on the bypass flow. As a result, the Taylor vortex was found at TVF, WVF, MWVF and TTVF regions. The highest number of Taylor vortex was observed at TVF region, while the lowest at TTVF region. The numerical model was validated by comparing with the experimental data and the simulation results were in good agreement with the experimental data.

Numerical Study of Taylor-Couette Flow with an Axial Flow (축방향 유동이 있는 Taylor-Couette 유동에 대한 전산 해석)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.444-449
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11 (12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

  • PDF

Taylor-Proudman Column Flows in a Compressible Rotating Fluid (압축성 회전 유동에서의 비점성 Taylor-Proudman column 유동)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.27-32
    • /
    • 2001
  • A study has been made of the condition to maintaining Taylor-Proudman column flows in a compressible rotating fluid, which is driven by small mechanical and/or thermal perturbations imposing on the container wall in the basic state of isothermal rigid body rotation. The Rossby and system Ekman numbers are assumed to be very small. The Taylor-Proudman column flow can be produced when energy parameter, e, becomes constant on the whole flow region. Energy balance concept, related to energy parameter, and its physical interpretation are given with comprehensive discussions.

  • PDF

Numerical Study of Wavy Taylor-Couette Flow (II) -With an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (II) -축방향 유동이 있는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.705-712
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. The case without the axial flow was investigated in the preceding paper. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11(12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Study of Different Radial Temperature Gradient Effect on Taylor-Couette Flow Instability (온도구배가 Taylor-Couette유동의 불안정성에 주는 영향에 관한 연구)

  • Cha, Jae-Eun;Liu, Dong;Tu, Xin Cheng;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • We have investigated different radial temperature gradient effect on the stability of Taylor-Couette flow. The radius ratio and aspect ratio of the model was 0.825 and 48, respectively. Two heating exchangers were used for generating different temperature gradient along the radial direction. The change of flow regime in the Taylor-Couette flow was studied by increasing the Reynolds number. The results showed that: as Gr is increased in helical vortex flow regime, the vortices with the same direction of convection flow increased in size, and the vortex moving velocity also increased. It is also shown that the presence of temperature gradient obviously increased the flow instability when the Richardson number is larger than 0.0045.

Experimental Study of Axial Slit Wall Effect on Taylor-Couette Flow (축방향 홈이 있는 Taylor-Couette 유동의 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.889-894
    • /
    • 2007
  • The effect of the axial slit of outer cylinder on Taylor-Couette flow was experimentally investigated. The radius ratio and aspect ratio of the model was 0.825 and 48, respectively. The depth of slits was 5mm and total 18 slits were azimuthally located along the inner wall of outer cylinder. We used PIV method to measure the flow field and applied refractive index matching method to resolve the image distortion due to the complex model geometry. The results showed the axial slit did not affect the transition from laminar Couette flow to Taylor vortex. The effect of slit wall appeared when the Reynolds number is larger than Re=143 and the slit model shows the transition to turbulent Taylor vortex flow above Re=143.

On the Structures of Taylor Vortices. (Taylor Vortex의 구조에 대한 연구)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1081-1088
    • /
    • 2003
  • Numerical investigation on the structures of various Taylor vortices induced in the flow between two concentric cylinders, with the inner one rotating and with a pressure-driven axial flow imposed, is carried out, and compared with the experiments of Wereley and Lueptow [Phys. fluid, 11(12), 1999] who studied the Taylor vortices using PIV in detail. Especially, the properties of helical vortices and random wavy vortices are discussed, and their three-dimensional structures are visualized using the numerical data. Our simulation also predicts that random wavy vortices have quasi-periodic movement which can be explained by traveling waves formed in the azimuthal direction. The numerical results are well consistent with the experimental findings of Wereley and Lueptow.