• Title/Summary/Keyword: Taylor series approximation

Search Result 51, Processing Time 0.022 seconds

Performance Comparison of Taylor Series Approximation and CORDIC Algorithm for an Open-Loop Polar Transmitter (Open-Loop Polar Transmitter에 적용 가능한 테일러 급수 근사식과 CORDIC 기법 성능 비교 및 평가)

  • Kim, Sun-Ho;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.1-8
    • /
    • 2010
  • A digital phase wrapping modulation (DPM) open-loop polar transmitter can be efficiently applied to a wideband orthogonal frequency division multiplexing (OFDM) communication system by converting in-phase and quadrature signals to envelope and phase signals and then employing the signal mapping process. This mapping process is very similar to quantization in a general communication system, and when taking into account the error that appears during mapping process, one can replace the coordinates rotation digital computer (CORDIC) algorithm in the coordinate conversion part with the Taylor series approximation method. In this paper, we investigate the application of the Taylor series approximation to the cartesian to polar coordinate conversion part of a DPM polar transmitter for wideband OFDM systems. The conventional approach relies on the CORDIC algorithm. To achieve efficient application, we perform computer simulation to measure mean square error (MSE) of the both approaches and find the minimum approximation order for the Taylor series approximation compatible to allowable error of the CORDIC algorithm in terms of hardware design. Furthermore, comparing the processing speeds of the both approaches in the implementation with FPGA reveals that the Taylor series approximation with lower order improves the processing speed in the coordinate conversion part.

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

Sliding Mode Controller Design Considering Weight (가중치를 고려한 슬라이딩 모드 제어기 설계)

  • 임동균;서병설
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.73-77
    • /
    • 1998
  • The conventional sliding mode controller (SMCr) approach is often impractical or difficult when applied to high order process because the number of tuning parameters in the SMCr increases with the order of the plant. Camacho(1996) proposed the design of a fixed structure sliding mode controller based on a first order plus dead time approximation to the higher-order process. But, there are such problems as overshoot, settling time and command following. They are mainly due to the approximation errors of the time delay term by Taylor series. In this paper, in order to improve Camcho's method, a new Taylor approximation technique considering a weight is proposed.

  • PDF

Approximation of a Warship Passive Sonar Signal Using Taylor Expansion (테일러 전개를 이용한 함정 수동 소나 신호 근사)

  • Hong, Wooyoung;Jung, Youngcheol;Lim, Jun-Seok;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.232-237
    • /
    • 2014
  • A passive sonar of warship is composed of several directional or omni-directional sensors. In order to model the acoustic signal received into a warship sonar, the wave propagation modeling is usually required from arbitrary noise source to all sensors equipped to the sonar. However, the full calculation for all sensors is time-consuming and the performance of sonar simulator deteriorates. In this study, we suggest an asymptotic method to estimate the sonar signal arrived to sensors adjacent to the reference sensor, where it is assumed that all information of eigenrays is known. This method is developed using Taylor series for the time delay of eigenray and similar to Fraunhofer and Fresnel approximation for sonar aperture. To validate the proposed method, some numerical experiments are performed for the passive sonar. The approximation when the second-order term is kept is vastly superior. In addition, the error criterion for each approximation is provided with a practical example.

Performance Analysis of Monopulse System Based on Third-Order Taylor Expansion in Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 3차 테일러 전개 기반 해석적 분석)

  • Ham, Hyeong-Woo;Kim, Kun-Young;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.14-21
    • /
    • 2021
  • In this paper, it is shown how the performance of the monopulse algorithm in the presence of an additive noise can be obtained analytically. In the previous study, analytic performance analysis based on the first-order Taylor series and the second-order Taylor series has been conducted. By adopting the third-order Taylor series, it is shown that the analytic performance based on the third-order Taylor series can be made closer to the performance of the original monopulse algorithm than the analytic performance based on the first-order Taylor series and the second-order Taylor series. The analytic MSE based on the third-order Taylor approximation reduces the analytic MSE error based on the second-order Taylor approximation by 89.5%. It also shows faster results in all cases than the Monte Carlo-based MSE. Through this study, it is possible to explicitly analyze the angle estimation ability of monopulse radar in an environment where noise jamming is applied.

Numerical Solutions of Fractional Differential Equations with Variable Coefficients by Taylor Basis Functions

  • Kammanee, Athassawat
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.383-393
    • /
    • 2021
  • In this paper, numerical techniques are presented for solving initial value problems of fractional differential equations with variable coefficients. The method is derived by applying a Taylor vector approximation. Moreover, the operational matrix of fractional integration of a Taylor vector is provided in order to transform the continuous equations into a system of algebraic equations. Furthermore, numerical examples demonstrate that this method is applicable and accurate.

Sliding Mode Controller Design Considering Weight (가중치를 고려한 슬라이딩 모드 제어기 설계)

  • 임동균;서병설
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.223-230
    • /
    • 1999
  • A conventional sliding mode control approach is often impractical or difficult when it is applied to high order process b because the number of tuning parameters in the sliding mode controller increases with the order of the plant. C Camacho(l996) proposed a design method of a fixed structure sliding mode controller based on a first order plus dead t time approximation to the higher-order process. But, his method has such problems as chattering, over‘shoot, and c command following due to the Taylor the approximation en‘ors for the time delay term of the first order model. In this p paper, a new design technique for a sliding mode controller based on the modified Taylor approximation considered a w weight is developed to improve the Camacho's problems.

  • PDF

Case Deletion Diagnostics for Intraclass Correlation Model

  • Kim, Myung Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2014
  • The intraclass correlation model has a long history of applications in several fields of research. Case deletion diagnostic methods for the intraclass correlation model are proposed. Based on the likelihood equations, we derive a formula for a case deletion diagnostic method which enables us to investigate the influence of observations on the maximum likelihood estimates of the model parameters. Using the Taylor series expansion we develop an approximation to the likelihood distance. Numerical examples are provided for illustration.

Taylor′s Series Model Analysis of Maximum Simultaneous Switching Noise for Ground Interconnection Networks in CMOS Systems (CMOS그라운드 연결망에서 발생하는 최대 동시 스위칭 잡음의 테일러 급수 모형의 분석)

  • 임경택;조태호;백종흠;김석윤
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.129-132
    • /
    • 2001
  • This paper presents an efficient method to estimate the maximum SSN (simultaneous switching noise) for ground interconnection networks in CMOS systems using Taylor's series and analyzes the truncation error that has occurred in Taylor's series approximation. We assume that the curve form of noise voltage on ground interconnection networks is linear and derive a polynomial expression to estimate the maximum value of SSN using $\alpha$-power MOS model. The maximum relative error due to the truncation is shown to be under 1.87% through simulations when we approximate the noise expression in the 3rd-order polynomial.

  • PDF

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF