• Title/Summary/Keyword: Telecentric lens

Search Result 20, Processing Time 0.027 seconds

The Design of Telecentric Lenses and Fly-eye Lenses by Utilizing fθ Formula (fθ 공식을 활용한 텔레센트릭 렌즈 및 플라이아이 렌즈의 설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • We try to find the generalized structural equation that gives a perspective understanding for telecentric lenses through paraxial optical algebraic equations and preconditions from a highly experienced design sense. The equation is named the $f{\theta}$ formula and this formula is applied to single lenses, double Gauss lenses, Cooke triplet lenses and the compound lens composed of a Cooke triplet lens and a double Gauss lens step by step. And this formula is also applied to single fly-eye lenses plus a telecentric lens and double fly-eye lenses plus a telecentric lens in sequence. As a result, we can confirm that this $f{\theta}$ formula leads to intuitive optical design with a structural understanding for telecentric lens systems.

Design of a Telecentric Lens with a Smartphone Camera to Utilize Machine Vision (머신비전을 위한 스마트폰용 텔레센트릭 렌즈의 설계)

  • Choi, Yeon-Chan;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • A generalized structural design equation can be used to simplify and systematize a telecentric lens system composed of multiple lenses, as a creative design method of the authors. Through this structural equation, we have investigated the feasibility and design methodology of a telecentric lens equipped with a conventional smartphone camera for machine vision. As a result, we could verify and present a useful, generalized structural equation termed the $f{\theta}$ formula, being able to divide and combine the whole telecentric lens system into two modularized lens groups.

Selection of Optical Glasses Using a Chromatic-Aberration Correction Method for the Whole Visible Range Plus a Telecentric Lens Design Applying the Method (가시광선 전대역의 색수차보정을 위한 광학유리의 선정과 이를 적용한 텔레센트릭 렌즈의 설계)

  • Yu, Seung Moon;Jung, Mee Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.217-225
    • /
    • 2015
  • This paper shows the best selection and combination of glass in lens design, to correct a chromatic aberration using achromatic and apochromatic conditions. Using this research result, we have designed a telecentric lens for machine vision in the full range of visible light. We obtain good optical quality in the form of a quite small RMS wavefront error of $0.057{\lambda}$ in the super-broadband wavelength range 380 nm -780 nm. This result is better than that for a common telecentric lens in the visible wavelength range 486.1-656.2 nm.

Development of Image-space Telecentric Lens for Intra-Oral 3D Scanner

  • Kim, Tae Young;Shin, Min-Ho;Chang, Ryungkee;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • An image-space telecentric lens for an intra-oral 3D scanner was designed and fabricated for dental application. Since a telecentric function can provide the same results regardless of image plane position, it helps to realize a more accurate image for an intra-oral scanner. The performance of the designed lens meets the required properties for HD resolution. In particular, lateral color is corrected within 1 pixel. This system achieves depth of focus of more than 3 mm. For user convenience, the developed system consists of a prism part and an imaging part. Both parts are optimized to reduce the front size and weight of the system. In order to make the parallax sights, parallax angle was determined to be 8 degrees between two optical systems.

Development of 3D scanner using structured light module based on variable focus lens

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.260-268
    • /
    • 2020
  • Currently, it is usually a 3D scanner processing method as a laser method. However, the laser method has a disadvantage of slow scanning speed and poor precision. Although optical scanners are used as a method to compensate for these shortcomings, optical scanners are closely related to the distance and precision of the object, and have the disadvantage of being expensive. In this paper, 3D scanner using variable focus lens-based structured light module with improved measurement precision was designed to be high performance, low price, and usable in industrial fields. To this end, designed a telecentric optical system based on a variable focus lens and connected to the telecentric mechanism of the step motor and lens to adjust the focus of the variable lens. Designed a connection structure with optimized scalability of hardware circuits that configures a stepper motor to form a system with a built-in processor. In addition, by applying an algorithm that can simultaneously acquire high-resolution texture image and depth information and apply image synthesis technology and GPU-based high-speed structured light processing technology, it is also stable for changes to external light. We will designed and implemented for further improving high measurement precision.

A conceptual introduction and the research of the optical properties of the Telecentric lens system (Telecentric 렌즈계의 이해와 광학적 성능 조사)

  • Kim, Bonghwan;Lim, Hyeonseon;Ji, Taeksang;Yoon, Sungro
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.197-202
    • /
    • 2002
  • In this paper, we want to help understanding about telecentric as introducing the concept of the system and researching the optical properties after we choose the designed profile projection lens. An analyzed optical system is F-number=2.8 and the first lens is used negative lens. Accordingly, we can know this system is compacter, because the front focal position is to the inside of the system and aperture stop is designed to the inside of the optical system. The field is about $21^{\circ}$. Since the entrance pupil is located the front focal point, we can certify the exit pupil is -49404.1mm, located on the infinite toward the object space. Therefore, the optical system is the form of 'image space telecentricity'.

  • PDF

Novel Telecentric Collimator Design for Mobile Optical Inspection Instruments

  • Hojong Choi;Seongil Cho;Jaemyung Ryu
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.263-272
    • /
    • 2023
  • A collimator refers to an optical system that images a collimated beam at a desired point. A resolution target located at a near distance can be converted into a virtual image located at a long distance. To test the resolution for mobile cameras, a large target is placed at a long distance. If a collimator system is used, the target can be placed at a near distance. The space required for a resolution inspection can thus be drastically reduced. However, to inspect a mobile camera, the exit pupil of the collimator system and the entrance pupil of the mobile camera must match, and the stop of the collimator system must be located on the last surface. Because a collimator system cannot be symmetrical with respect to the stop, the distortion becomes extremely large, which can be corrected by combining the collimator symmetrically with respect to the object plane. A novel system was designed to inspect an optical lens on a mobile phone. After arranging the refractive power, lenses were added using the equivalent lens design method. The distortion was reduced to less than 1%. This optical system satisfies a half-field angle of 45° and an optical performance sufficient for inspection.

Analysis of surface-relief profile for TPHK(Telecentric Paraxial Holographic Kinoform) as a fourier-transform lens using exact raytracking (광선추적법에 의한 푸리에변환 렌즈로서의 TPHK(Telecentric Paraxial Holographic Kinoform)의 표면양각형태에 대한 분석)

  • 김성우;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.51-58
    • /
    • 1998
  • We investigated surface-relief profiles of the TPHK(telecentric paraxial holographic kinofrm) used as a Fourier-transform lens employing exact geometrical raytracing. For the TPHK of F/8 and focal length of 15 mm, we consider the cases where the thickness of the substrate is 0 and 50 ${\mu}{\textrm}{m}$, dividing the surface-relif profiles into fifty steps from plano-convex to convexplano shapes and varying the angle of incidence($0^{\circ},{2.5}^{\circ},5^{\circ}$). In order to identify appropriate surface-relief profiles, we employ, as criteria of performance, rms spot size, rms deviation from $f{\sin}{\theta}$, peak position and FWHM(full width at half maximum), number of rays abandoned from raytracing etc., which are determined from the result of exact raytracing. It is found that the profile with 80% of its relief thickness facing the image plane gives the best performance regardless of the presence of substrate.

  • PDF