• Title/Summary/Keyword: Telomere

Search Result 135, Processing Time 0.031 seconds

Telomere의 양적 분석을 이용한 닭의 bio-marker개발

  • 조은정;최철환;전익수;박철;손시환
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.13-15
    • /
    • 2004
  • Telomeres are the end of chromosomes and consist of a tandem repeat sequence of (TTAGGG)n and associated proteins. Telomeres are essential for chromosome stability and are related with cell senescence and apoptosis. This study was carried out to analyze the amount of telomeric DNA of chicken lymphocytes, which is to considered as bio-marker. The amount of telomeric DNA of lymphocytes in Korean Native Chicken and White Leghorn was analyzed by quantitative-fluorescence in situ hybridization (Q-FISH) technique using the chicken telomeric DNA probe. Telomere quantifies were compared among breeds, ages and sex, and the relationship between the amount of telomeres and their productive trait was also analyzed. Comparing the amount of telomeric DNA on lymphocytes during growing period, the amount of telomeres was gradually decreased as growing older. The telomere quantity was also significantly different in breeds and sex. Estimating correlation coefficient, the amount of telomeres was positively correlated to sexual maturity and body weight but negatively correlated to hen day egg production and egg weight. These results implicate the telomere quantity is considered as an individual bio-marker.

  • PDF

한국 재래닭의 발생.발육단계별 telomere와 telomerase activity 분석

  • 정길선;조은정;최철환;손시환
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.16-18
    • /
    • 2004
  • This study was carried out to analyze the amount of telomeres and telomerase activity of several chicken cells. Telomere quantity and telomerase activity were analyzed during organ development, growth and aging in embryonic and adults chicken. Analyzed cells were whole embryos and the cells from brain, heart, liver, kidney, lymphocytes and germinal tissues in Korean Native Chicken. The amount of telomeric DNA was analyzed by quantitative fluorescence in situ hybridization (Q-FISH) techniques using a chicken telomere repeat probe. Telomerase activity was performed by Telomeric Repeat Amplification Protocol (TRAP) assay. In results, telomerase activity was highly detectable in early embryonic cells, germinal cells and kidney cells. Whereas the cells from brain, heart, and liver had gradually down-regulated pattern of telomerase activity. Analyzing the telomere quantities on chicken cells, the amount of telomeric DNA of most chicken cells gradually decreased as growth. From these results, the amount of telomeric DNA was directly affected by telomerase activity. Consequently the telomere quantity and telomerase activity are closely relate to cell differentiation and tissue specificity during developmental and growing stages.

  • PDF

Comparison of Telomere Length and Vitality among Korean Native Chicken Breeds (토종닭 품종 간 텔로미어 길이 및 생존율 비교 분석)

  • Cho, Eun Jung;Kim, Bo Gyeong;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.49 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • We compared the degrees of vitality of 12 Korean native chicken breeds, such as Jaeraejong, Korean Rhode Island Red (Rhode), Korean White Leghorn, Korean Cornish (Cornish), and Korean Ogye breeds. The survival rate and telomere length were measured as vital markers. Telomere length was analyzed via quantitative fluorescence in situ hybridization method using the lymphocytes of 466 chickens. We found that the telomere length decreased linearly with increasing chronological age in all chicken breeds. Telomere length and telomere shortening rates (TSR) were significantly different among the chicken breeds after 20 weeks of age (P<0.01). Rhode had the longest telomere length and the lowest TSR, whereas Cornish had the shortest telomere length and the highest TSR. In terms of TSR, the telomere length of 50-week-old chickens was half of that of 8-week-old chickens. There was also a significant difference in survival rates among the breeds. Both Rhode and Korean Ogye had the highest survival rates, while Cornish had the lowest. There was a significant positive correlation between survival rate and telomere length, and telomere length in old age showed a higher correlation with survival rate than that in young age. Therefore, it is considered that TSR is more closely related to survival rate than the telomere length. Based on the telomere dynamics and survival rates of 12 Korean native chicken breeds, it was concluded that the Rhode breed and Cornish breed had the highest and lowest vitality, respectively.

Inheritance and Heritability of Telomere Length in Chicken (닭 텔로미어 길이의 유전력 추정과 유전 전이 양상)

  • Park, Dan Bi;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.41 no.3
    • /
    • pp.217-225
    • /
    • 2014
  • Telomeres are the ends of the eukaryotic chromosomes and consist of a tandem repetitive DNA sequence and shelterin protein complex. The function of telomere is to protect chromosome. Telomere length in somatic cells tends to decrease with organismal age due to the end replication problem. However, several factors at the genetic, epigenetic and environmental level affect telomere length. In this study, we estimated heritability of telomere length and investigated inheritance of telomeres in a chicken. Telomere length of lymphocytes was analyzed by semi-quantitative polymerase chain reaction using telomere primer and quantitative fluorescence in situ hybridization using telomeric DNA probe. In results, heritability of telomere length was estimated 0.9 at birth by offspring-parent regression analysis and was estimated 0.03 and 0.04 at 10 and 30 weeks old, respectively, by parental variance analysis. There was a significant positive correlation in telomere length between father and their offspring (r=0.348), and mother and their offspring (r=0.380). In inheritance patterns of telomere length, the influence of paternal and maternal effect on their offspring was similar. The influence of inherited telomeres on male and female progeny was also roughly alike. These results implicated that imprinting of parental telomere length was regulated by autosomal genes, not sex linked genes. In addition, telomere length of offspring at birth did not differ along with their maternal age. Thus, maternal age does not affects telomere length in their offspring at birth owing to cellular reprogramming at early embryonic stage.

Reduced Telomere Length in Colorectal Carcinomas

  • Feng, Tong-Bao;Cai, Lei-Ming;Qian, Ke-Qing;Qi, Chun-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.443-446
    • /
    • 2012
  • Purpose: Telomeres play a key role in the maintenance of chromosome integrity and stability, and telomere shortening is involved in initiation and progression of malignancies. The aim of this study was to determine whether telomere length is associated with the colorectal carcinoma. Patients and methods: A total of 148 colorectal cancer (CRC) samples and corresponding adjacent non-cancerous tissues were evaluated for telomere length, P53 mutation, and cyclooxygenase-2 (COX-2) mutation detected by fluorescent immunohistochemistry. Telomere length was estimated by real-time PCR. Samples with a T/S>1.0 have an average telomere length greater than that of the standard DNA; samples with a T/S<1.0 have an average telomere length shorter than that of the standard DNA. Results: Telomeres were shorter in CRCs than in adjacent tissues, regardless of tumor stage and grade, site, or genetic alterations (P=0.004). Telomere length in CRCs also had differences with COX-2 status (P=0.004), but did not differ with P53 status (P=0.101), tumor progression (P=0.244), gender (P=0.542), and metastasis (P=0.488). There was no clear trend between T/S optimal cut-off values (<1 or > 1) and colorectal tumor progression, metastasis, gender, P53 and COX-2 status. Conclusion: These findings suggesting that telomere shortening is associated with colorectal carcinogenesis but does not differ with tumor progression, gender, and metastasis.

The Effect of Swimming Exercise on Telomere Length & Expression of Telomere Repeat Binding Factor 2 in Rats (수영 운동이 흰쥐의 Telomere 길이와 TRF 2 발현에 미치는 영향)

  • Kim, Sang Hoon;Lee, Jeong Pil;Yoon, Jin-Ho;Oh, Jae-Keun
    • 한국노년학
    • /
    • v.29 no.2
    • /
    • pp.657-667
    • /
    • 2009
  • The aim of the present study was to investigate the effects of swimming exercise on growth-related telomere length and expression of TRF 2 in different tissues of SD rats. The telomere lengths of all the tissues analyzed were longer in the standard group than either in aged-control group or in two aged-exercise groups, suggesting growth-induced attrition of telomere lengths. On the other hand, it was also found that swimming exercise could attenuate this growth-related telomere attrition in the heart tissue of the long-term group only, with no significant attenuating effects of aerobic exercise on either liver telomere length or soleus muscle telomere length. Also, in the heart, TRF 2 expression was significantly lower in control group compare to standard group. But, there was significantly higher in long term exercise group compare to control group. There was positive correlation between telomere length and expression of TRF 2 in heart tissue. This study implies that the swimming exercise performed for longer periods of time can contribute to growth process of heart by regulation of telomere length and TRF 2 expression. In the growth process, the regular swimming exercise will provide a meaningful advantage for various physiological processes.

Telomere association of Oryza sativa telomere repeat-binding factor like 1 and its roles in telomere maintenance and development in rice, Oryza sativa L.

  • Byun, Mi Young;Cui, Li Hua;Lee, Hyoungseok;Kim, Woo Taek
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.578-583
    • /
    • 2018
  • Telomeres are specialized nucleoprotein complexes that function to protect eukaryotic chromosomes from recombination and erosion. Several telomere binding proteins (TBPs) have been characterized in higher plants, but their detailed in vivo functions at the plant level are largely unknown. In this study, we identified and characterized OsTRFL1 (Oryza sativa Telomere Repeat-binding Factor Like 1) in rice, a monocot model crop. Although OsTRFL1 did not directly bind to telomere repeats $(TTTAGGG){_4}$ in vitro, it was associated with telomeric sequences in planta. OsTRFL1 interacted with rice TBPs, such as OsTRBF1 and RTBP1, in yeast and plant cells as well as in vitro. Thus, it seems likely that the association of OsTRFL1 with other TBPs enables OsTRFL1 to bind to telomeres indirectly. T-DNA inserted OsTRFL1 knock-out mutant rice plants displayed significantly longer telomeres (6-25 kb) than those (5-12 kb) in wild-type plants, indicating that OsTRFL1 is a negative factor for telomere lengthening. The reduced levels of OsTRFL1 caused serious developmental defects in both vegetative and reproductive organs of rice plants. These results suggest that OsTRFL1 is an essential factor for the proper maintenance of telomeres and normal development of rice.

Hepatitis C Virus Nonstructural 5A Protein Interacts with Telomere Length Regulation Protein: Implications for Telomere Shortening in Patients Infected with HCV

  • Lim, Yun-Sook;Nguyen, Men T.N.;Pham, Thuy X.;Huynh, Trang T.X.;Park, Eun-Mee;Choi, Dong Hwa;Kang, Sang Min;Tark, Dongseob;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.148-157
    • /
    • 2022
  • Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for viral propagation. Using protein microarray analysis, we identified 90 cellular proteins as HCV nonstructural 5A (NS5A) interacting partners, and selected telomere length regulation protein (TEN1) for further study. TEN1 forms a heterotrimeric complex with CTC and STN1, which is essential for telomere protection and maintenance. Telomere length decreases in patients with active HCV, chronic liver disease, and hepatocellular carcinoma. However, the molecular mechanism of telomere length shortening in HCV-associated disease is largely unknown. In the present study, protein interactions between NS5A and TEN1 were confirmed by immunoprecipitation assays. Silencing of TEN1 reduced both viral RNA and protein expression levels of HCV, while ectopic expression of the siRNA-resistant TEN1 recovered the viral protein level, suggesting that TEN1 was specifically required for HCV propagation. Importantly, we found that TEN1 is re-localized from the nucleus to the cytoplasm in HCV-infected cells. These data suggest that HCV exploits TEN1 to promote viral propagation and that telomere protection is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the telomere shortening in HCV-infected cells.

Role of telomere length in subtelomeric gene expression and its possible relation to cellular senescence

  • Hernandez-Caballero, E.;Herrera-Gonzalez, N.E.;Salamanca-Gomez, F.;Arenas-Aranda, D.J.
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.747-751
    • /
    • 2009
  • Transcriptional silencing of subtelomeric genes is associated with telomere length, which is correlated with age. Long and short telomeres in young and old people, respectively, coincide with gene repression and activation in each case. In addition, differential location of genes with respect to telomeres causes telomere position effect. There is very little evidence of the manner in which age-related telomere length affects the expression of specific human subtelomeric genes. We analyzed the relationship between telomere length and gene expression levels in fibroblasts derived from human donors at ages ranging from 0-70 years. We studied three groups of genes located between 100 and 150 kb, 200 and 250 kb, and >300 kb away from telomeres. We found that the chromatin modifier-encoding genes Eu-HMTase1, ZMYND11, and RASA3 were overexpressed in adults. Our results suggest that short telomere length-related overexpression of chromatin modifiers could underlie transcriptional changes contributing to cellular senescence.

Telomerase: Key to Mortal or Immortal Road

  • Yang, Eun-Young;Sung, Young Hoon;Lee, Han-Woong
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.183-188
    • /
    • 2002
  • Gradual attrition of telomere to a critical short length elicits successive cellular response of cellular senescence and crisis. Cancer cells evade this process by maintaining functional telomeres via one of two known mechanisms of telomere maintenance. The first and most frequent mechanism involves reactivation of enzyme activity of telomerase, a ribonucleoprotein complex mainly via transcriptional up-regulation of TERT, a catalytic subunit of telomerase complex. The second mechanism utilizes telomerase-independent way termed ALT (for Alternative Lengthening of Telomere), which possibly involves recombination pathways. Thus master key for cellular immortalization is supposed to possess adequate telomere reserves. Indeed, telomerase can alone induce the immortalization under culture on feeder cell layers without generally known inactivation mechanism of tumor suppressor genes. Including this phenomena, this review will focus on telomerase and telomere-associated proteins, thereby implication of these proteins for cellular immortalization processes.