• Title, Summary, Keyword: Temperature

Search Result 83,528, Processing Time 0.119 seconds

The inference of minimum temperature of the solar atmosphere from the FISS data

  • Moon, Byeongha;Chae, Jongchul;Kang, Juhyeong;Oh, Suyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2018
  • In the solar atmosphere, below the region of temperature minimum, temperature decreases with height and above it, temperature increases with height. Therefore the inference of temperature minimum is a basis of the study about the solar atmosphere and heating problem. The temperature of the temperature minimum region can be inferred from acoustic cutoff frequency. According to a recent study the acoustic cutoff frequency is related to the peak frequency of the power spectrum the chromospheric three-minute velocity oscillations. Using this relationship, we infer the temperature of temperature minimum. The three minute velocity oscillation and its power spectrum are obtained for a pore observed with the Fast Imaging Solar Spectrograph (FISS) $H{\alpha}$ band. We present the inferred temperature and compare it with the temperature of Maltby model. We also investigate the effect of the inclination of magnetic field on the temperature minimum.

  • PDF

A CMOS-based Temperature Sensor with Subthreshold Operation for Low-voltage and Low-power On-chip Thermal Monitoring

  • Na, Jun-Seok;Shin, Woosul;Kwak, Bong-Choon;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • A CMOS-based temperature sensor is proposed for low-voltage and low-power on-chip thermal monitoring applications. The proposed temperature sensor converts a proportional to absolute temperature (PTAT) current to a PTAT frequency using an integrator and hysteresis comparator. In addition, it operates in the subthreshold region, allowing reduced power consumption. The proposed temperature sensor was fabricated in a standard 90 nm CMOS technology. Measurement results of the proposed temperature sensor show a temperature error of between -0.81 and $+0.94^{\circ}C$ in the temperature range of 0 to $70^{\circ}C$ after one-point calibration at $30^{\circ}C$, with a temperature coefficient of $218Hz/^{\circ}C$. Moreover, the measured energy of the proposed temperature sensor is 36 pJ per conversion, the lowest compared to prior works.

Physiological Response of Panax Ginseng to Tcmpcrature II. Leaf physiology, soil temperature, air temperature, growth of pathogene (인삼의 온도에 대한 생리반응 II. 엽의 생리, 지온, 기온, 병환의 생육)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.104-120
    • /
    • 1980
  • The effects of temperature on transpiration, chlorophyll content, frequency and aperture of stomata, and leaf temperature of Panax ginseng were reviewed. Temperature changes of soil and air under spade roof were also reviewed. Growth responses of responses of ginseng plant at various temperature were assessed in relation to suseptibillity of ginseng plants. Reasonable management of ginseng fields was suggested based on the response of ginseng to various temperatures. Stomata frequency may be increased under high temperature during leaf$.$growing stage. Stomata aperture increased by high temperature but the increase of both frequency and aperture appears not enough for transpiration to overcome high temperature encountered during summer in most fields. Serial high temperature disorder, i.e high leaf temperature, chlorophyll loss, inhibition of photosynthesis, increased respiration and wilting might be alleviated by high humidity and abundant water supply to leaf. High air temperature which limits light transmission rate inside the shade roof, induces high soil temperature(optimum soil temperature 16∼18$^{\circ}C$) and both(especially the latter) are the principal factors to increase alternaria blight, anthracnose, early leaf fall, root rot and high missing rate of plant resulting in poor yield. High temperature disorder was lessen by abundant soil water(optimum 17∼21%) and could be decreased by lowering the content of availability of phosphorus and nitrogen in soil consequently resulting in less activity of microorganisms. Repeated plowing of fields during preparation seems to be effective for sterilization of pathogenic microoganisms by high soil temperature only on surface of soils. Low temperature damage appeared at thowing of soils and emergence stage of ginseng but reports were limited. Most limiting factor of yield appeared as physiological disorder and high pathogen activity due to high temperature during summer(about three months).

  • PDF

A Study on Body Temperature Measurement of Woven Textile Electrode Using Lock-In-Amp based on Microprocessor (마이크로 프로세서 기반 Lock-In-Amp를 이용한 텍스타일 직물전극의 체온 측정에 관한 연구)

  • Lee, Kang-Hwi;Lee, Sung-Su;Lee, Jeong-Whan;Song, Ha-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1141-1148
    • /
    • 2017
  • Generally, a thermistor made by sintering a metal oxide is widely used to measure the ambient temperature. This thermistor is widely used not only for industrial use but also for medical use because of its excellent sensitivity, durability, temperature change characteristics and low cost. In particular, the normal body temperature is 36.9 degrees relative to the armpit temperature, and it is most closely related to the circulating blood flow. Previous studies have shown that body temperature changes during biomechanical changes and body temperature changes by anomalous signs or illnesses. Therefore, in this study, we propose a Lock-In-Amp design to detect minute temperature changes of clothing and thermistor wired by a preacher as a method to regularly measure body temperature in daily life. Especially, it is designed to measure the minute resistance change of the thermistor according to body temperature change even in a low-cost microprocessor environment by using a micro-processor-based Lock-In-Amp, and a jacquard and the thermistor is arranged so as to be close to the side, so that the reference body temperature can be easily measured. The temperature was measured and stored in real time using short-range wireless communication for non - restraint temperature monitoring. A baby vest was made to verify its performance through temperature experiments for infants. The measurement of infant body temperature through the existing skin sensor or thermometer has limitations in monitoring infant body temperature for a long time without restriction. However, it can be overcome by using the embroidery fabric based micro temperature monitoring wireless monitoring device proposed in this study.

Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas (산지계류의 계절적 수온변동 특성 및 영향인자 분석)

  • Nam, Sooyoun;Choi, Hyung Tae;Lim, Honggeun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.

The Development of the Temperature Compensation Equipment to minimize Error in the Wireless Transmission System at 60GHz Band (60GHz대역 무선통신장애 해결을 위한 온도보상장치 개발)

  • Myung, Byung-Soo;Ku, Seong-Deag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • Usually, propagation attenuation of millimeter wave occurs by rainfall, snowfall, temperature, effect of pressure of air. In 60GHz wave band wireless communication network, temperature change becomes big factor of propagation loss department. Also, temperature change causes disturbance of 60GHz frequency at transceiver. In this study, we used 60GHz transceiver and found propagation loss of wireless path and operating frequency disturbance characteristics. In transceiver that there is no temperature compensated device, operating frequency of TX changed by 60.865GHz at temperature of $-5^{\circ}C$, and appeared by 60.730GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 100MHz, greatly. But, in transceiver that there is temperature compensated device, operating frequency of TX changed by 60.830GHz at temperature of $-5^{\circ}C$, and appeared by 60.710GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 20MHz. According to these result, we constructed between buildings examination wireless site for point to point wireless communication using 60GHz band transceivers who have do temperature compensated device, and investigated data transmission characteristics about ambient temperature change. Therefore, if use transceiver that have temperature compensated device, may overcome the wireless transmission error in 60GHz band wireless communication LAN networks despite of ambient temperature change.

  • PDF

Changes in Air Temperature and Its Relation to Ambulance Transports Due to Heat Stroke in All 47 Prefectures of Japan

  • Murakami, Shoko;Miyatake, Nobuyuki;Sakano, Noriko
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.5
    • /
    • pp.309-315
    • /
    • 2012
  • Objectives: Changes in air temperature and its relation to ambulance transports due to heat stroke in all 47 prefectures, in Japan were evaluated. Methods: Data on air temperature were obtained from the Japanese Meteorological Agency. Data on ambulance transports due to heat stroke was directly obtained from the Fire and Disaster Management Agency, Japan. We also used the number of deaths due to heat stroke from the Ministry of Health, Labour and Welfare, Japan, and population data from the Ministry of Internal Affairs and Communications. Chronological changes in parameters of air temperature were analyzed. In addition, the relation between air temperature and ambulance transports due to heat stroke in August 2010 was also evaluated by using an ecological study. Results: Positive and significant changes in the parameters of air temperature that is, the mean air temperature, mean of the highest air temperature, and mean of the lowest air temperature were noted in all 47 prefectures. In addition, changes in air temperature were accelerated when adjusted for observation years. Ambulance transports due to heat stroke was significantly correlated with air temperature in the ecological study. The highest air temperature was significantly linked to ambulance transports due to heat stroke, especially in elderly subjects. Conclusions: Global warming was demonstrated in all 47 prefectures in Japan. In addition, the higher air temperature was closely associated with higher ambulance transports due to heat stroke in Japan.

Factors Influencing Body Temperature in Elderly Surgical Patients (가온요법을 받은 노인 수술 환자의 체온과 영향요인)

  • Kwon, Mi Hee;Byeon, Young Soon
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.20 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • Purpose: The purpose of this study was to identify the factors that affect body temperature in elderly operation patients using a warming method and to examine differences in post operative body temperature by characteristics of the patients. Methods: Data were collected from 200 patients, aged 65 years or more undergoing surgery with a warming method. The data were analyzed using descriptive statistics, t-test, ANOVA, Scheffe's test and multiple regression with the SPSS 18.0 Program. Results: The mean score for body temperature of elderly operation patients using a warming method after surgery was $36.1{\pm}0.6^{\circ}C$ including 74 patients with hypothermia and 126 patients with normal body temperature. The body temperature according to general characteristics differed by age and whether the surgery was emergency surgery or not. The body temperature according to surgery-related factors differed by anesthesia type, length of operation, anesthesia time, magnitude of surgical procedure, amount of fluid, transfusion requirements, and preoperative body temperature. Factors influencing body temperature were age, BMI, transfusion requirements and preoperative body temperature. Conclusion: The results indicate that age, BMI, transfusion requirements and preoperative body temperature significantly influenced on body temperature after surgery. Thus preoperative body temperature needs to be maintained through pre-warming as a nursing intervention.

The Relationships between Temperature Changes and Mortality in Seoul, Korea (서울시의 기온변화와 사망자수 간의 관련성 연구)

  • Lee, Sa-Ra;Kim, Ho;Yi, Seung-Muk
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • Temperature change has been shown to affect daily mortality even though different analytical methods produce different results. The effect of air pollution on the relationship between the temperature and the mortality is not large, although differences exist between temperature models. The aim of this study was to examine how the temperature change affected the daily mortality in Seoul by comparing the results from the temperature model using two study periods: one from 1994 to 2007 and the other from 1997 to 2007. Generally mean temperature, minimum temperature and Q10 temperature was derived as an optimal model, even though there are differences between age and cause of death. The analysis of threshold using total mortalities in all ages from 1994 to 2007 and from 1997 to 2007 showed that the number of the deaths increased 7.02% (95% CI: 6.06~7.98) and 2.51% (95% CI: 1.83~3.19), respectively as the mean temperature increased $1^{\circ}C$ from a threshold temperature of $27.5^{\circ}C$ and $25.7^{\circ}C$ respectively. These results indicated that the temperature has less effect on the number of death than does an extreme heat wave period.