• Title/Summary/Keyword: Temperature

Search Result 88,245, Processing Time 0.087 seconds

Development of Automatic Measurement of Body Temperature by Taking the Temperature of Milk while Milking in Dairy Cattle (젖소에서 유즙체온 측정을 이용한 체온 자동 측정 방법의 개발)

  • 김용준;한종현;이수영;한병성;김동원
    • Journal of Veterinary Clinics
    • /
    • v.19 no.1
    • /
    • pp.37-42
    • /
    • 2002
  • To develop an automatic detecting system of body temperature of dairy cattle while milking, measurement of the temperature of mammary skin using three thermometers attached into the lining of teat cup was carried out for 23 dairy cattle, whereas measurement of the temperature of milk while milking was also performed for 263 animals. For the latter experiment, three thermometers were attached at 10cm(left and right) and 20 cm away from an individual milk collector on the milk transporting hose. Taking the rectal temperature was accompanied all the time for the experiments. The measurement of the temperature of mammary skin using teat cup was successful for 11 of 23 dairy cattle(47.8%) and the mean temperature was $33.5^{\circ}C$ with the mean difference of $5.2^{\circ}C$ from the mean rectal temperature. The measurement of the temperature of milk using the thermometers onto the milk transporting hose while milking was very successful , From 37.3 to $38.4^{\circ}C$ of rectal temperature, the temperature of milk was almost the same and from 38.5 to $39.5^{\circ}C$ of rectal temperature, the temperature of milk tended to be low with the difference of 0.1$^{\circ}C$. From 39.6 to $41^{\circ}C$ of rectal temperature, the temperature of milk tended to be low with the difference of $0.2-0.6^{\circ}C$. These results indicated that automatic detection of body temperature whether low or high can be possible if the temperature of milk is taken while milking and if it is connected to the integration system by on-line.

Analysis of unsteady temperature distribution in a cylinder for rifle barrel disign (원통형 용기의 비정상온도해석)

  • ;;;Lee, Hung Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.173-180
    • /
    • 1979
  • Temperature distriburion in a hollow chlinder has been analyzed mathematically. Unsteady condition considered assumed a constant heat flux input from the inside. The results are compared with experimental results of surface temperature rise of a gun barrel during continuous firing. Their agreements are acceptable. Effects of various dimensionless parameters on the surface temperature rise are discussed. For small Biot numbers, the external survface temperature approaches more rapidly to the steady temperature. Temperature difference between internal and external surfaces becomes greater for small Biot number. Steady solution assumed that the gas temperature inside the cylinder varies periodically. Relative amplitude and phase angles between the gas temperature and the internal or external surface temperature are obtained. Phase angles become smaller for large radiancy of gas temperature variation, small external Biot number, or large internal biot number. Relative amplitudes become samller as radiancy of gas temperature variation and internal Biot number become smaller. or external Biot number becomes larger. The solution obtained in this paper can be applied to gun barrels, heat pipes used in heat excangers, and reciprocation engines.

Effect of Feet Cooling and Feet Warming on the Behavioral Temperature Regulation (족부의 냉각과 가온이 행동성 체온조절에 미치는 영향)

  • Jeong, Woon-Seon
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.4
    • /
    • pp.681-686
    • /
    • 2007
  • This study was conducted to investigate the effects of the thermally different states of human feet on temperature regulation in winter season. Five healthy female students of age 20 volunteered as subjects to participate in the study. Physiological responses such as rectal temperature and skin temperatures as well as subjective responses of thermal comfort and thermal sensation were observed. Preferred clothing and preferred temperature were also evaluated in terms of behavioral temperature regulation. The results obtained through the experiment were statistically analyzed using paired t test. Rectal temperature was decreased greater (p<.01) and mean skin temperature was maintained higher (p<.01) in feet wanning than in feet cooling. Results of preferred clothing were coincident with those of general thermal sensation. There was a higher tendency to prefer temperature in feet wanning than feet cooling in the morning. It was concluded that keeping feet skin temperature lower in the early morning and higher in the late evening would be effective in terms of regulating circadian rhythm of core temperature.

  • PDF

Effects of Temperature and Daylength on Growth and Grain Yield in Wheat (T. aestivum) (온도 및 일장조건이 소맥의 생육 및 수량에 미치는 영향)

  • Cho, C.H.;Chung, T.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.2
    • /
    • pp.35-41
    • /
    • 1979
  • To observe the effects of temperature and photoperiod on the growth and yield of winter wheat (Triticum aestivum, L) eight varieties including Chang Kwang were tested at various treatments like longday-high temperature (24hrs-20\circ), shortdayhigh temperature (12hrs-20\circ), longday-low temperature (24hrs-14\circ) and shortday-low temperature (12hrs-14\circ). Among the traits measured, days to heading, plant height, spike length, number of spikes per hill and grain yield per hill were generally decreased at high temperature and long day treatment and increased at low temperature and shortday condition. Number of grains per spike was decreased at low temperature and short day condition while increased at longday and high temperature conditions. Grain weight was decreased significantly at high temperature and shortday while increased at low temperature and longday treatment.

  • PDF

An Analysis of a Winter-time Temperature Change and an Extreme Cold Waves Frequency in Korea (우리나라의 겨울철 기온 변화 및 한파 발생빈도 분석)

  • Jeon, Mi Jeong;Cho, Yongsung
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • To compare changes in winter temperature over South Korea, 30-year average climate data and climate data of recent 10 years (2014~2014) such as mean temperature, daily maximum temperature and daily minimum temperature were analyzed. Also, we set analysis extreme cold waves frequency related to winter such as freezing days, snow days, days with temperature of below -5, and days with temperature of below -10. This process enabled the comparative analysis of winter temperature changes and extreme cold waves frequency related to winter. This study estimated that winter temperature has gradually increased throughout the last five decades, however, the frequency of extreme weather, such as cold waves has also increased.

The inference of minimum temperature of the solar atmosphere from the FISS data

  • Moon, Byeongha;Chae, Jongchul;Kang, Juhyeong;Oh, Suyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2018
  • In the solar atmosphere, below the region of temperature minimum, temperature decreases with height and above it, temperature increases with height. Therefore the inference of temperature minimum is a basis of the study about the solar atmosphere and heating problem. The temperature of the temperature minimum region can be inferred from acoustic cutoff frequency. According to a recent study the acoustic cutoff frequency is related to the peak frequency of the power spectrum the chromospheric three-minute velocity oscillations. Using this relationship, we infer the temperature of temperature minimum. The three minute velocity oscillation and its power spectrum are obtained for a pore observed with the Fast Imaging Solar Spectrograph (FISS) $H{\alpha}$ band. We present the inferred temperature and compare it with the temperature of Maltby model. We also investigate the effect of the inclination of magnetic field on the temperature minimum.

  • PDF

Physiological Response of Panax Ginseng to Tcmpcrature II. Leaf physiology, soil temperature, air temperature, growth of pathogene (인삼의 온도에 대한 생리반응 II. 엽의 생리, 지온, 기온, 병환의 생육)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.104-120
    • /
    • 1980
  • The effects of temperature on transpiration, chlorophyll content, frequency and aperture of stomata, and leaf temperature of Panax ginseng were reviewed. Temperature changes of soil and air under spade roof were also reviewed. Growth responses of responses of ginseng plant at various temperature were assessed in relation to suseptibillity of ginseng plants. Reasonable management of ginseng fields was suggested based on the response of ginseng to various temperatures. Stomata frequency may be increased under high temperature during leaf$.$growing stage. Stomata aperture increased by high temperature but the increase of both frequency and aperture appears not enough for transpiration to overcome high temperature encountered during summer in most fields. Serial high temperature disorder, i.e high leaf temperature, chlorophyll loss, inhibition of photosynthesis, increased respiration and wilting might be alleviated by high humidity and abundant water supply to leaf. High air temperature which limits light transmission rate inside the shade roof, induces high soil temperature(optimum soil temperature 16∼18$^{\circ}C$) and both(especially the latter) are the principal factors to increase alternaria blight, anthracnose, early leaf fall, root rot and high missing rate of plant resulting in poor yield. High temperature disorder was lessen by abundant soil water(optimum 17∼21%) and could be decreased by lowering the content of availability of phosphorus and nitrogen in soil consequently resulting in less activity of microorganisms. Repeated plowing of fields during preparation seems to be effective for sterilization of pathogenic microoganisms by high soil temperature only on surface of soils. Low temperature damage appeared at thowing of soils and emergence stage of ginseng but reports were limited. Most limiting factor of yield appeared as physiological disorder and high pathogen activity due to high temperature during summer(about three months).

  • PDF

A Study on Body Temperature Measurement of Woven Textile Electrode Using Lock-In-Amp based on Microprocessor (마이크로 프로세서 기반 Lock-In-Amp를 이용한 텍스타일 직물전극의 체온 측정에 관한 연구)

  • Lee, Kang-Hwi;Lee, Sung-Su;Lee, Jeong-Whan;Song, Ha-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1141-1148
    • /
    • 2017
  • Generally, a thermistor made by sintering a metal oxide is widely used to measure the ambient temperature. This thermistor is widely used not only for industrial use but also for medical use because of its excellent sensitivity, durability, temperature change characteristics and low cost. In particular, the normal body temperature is 36.9 degrees relative to the armpit temperature, and it is most closely related to the circulating blood flow. Previous studies have shown that body temperature changes during biomechanical changes and body temperature changes by anomalous signs or illnesses. Therefore, in this study, we propose a Lock-In-Amp design to detect minute temperature changes of clothing and thermistor wired by a preacher as a method to regularly measure body temperature in daily life. Especially, it is designed to measure the minute resistance change of the thermistor according to body temperature change even in a low-cost microprocessor environment by using a micro-processor-based Lock-In-Amp, and a jacquard and the thermistor is arranged so as to be close to the side, so that the reference body temperature can be easily measured. The temperature was measured and stored in real time using short-range wireless communication for non - restraint temperature monitoring. A baby vest was made to verify its performance through temperature experiments for infants. The measurement of infant body temperature through the existing skin sensor or thermometer has limitations in monitoring infant body temperature for a long time without restriction. However, it can be overcome by using the embroidery fabric based micro temperature monitoring wireless monitoring device proposed in this study.

Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas (산지계류의 계절적 수온변동 특성 및 영향인자 분석)

  • Nam, Sooyoun;Choi, Hyung Tae;Lim, Honggeun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.