• Title/Summary/Keyword: Temperature Estimation

Search Result 1,637, Processing Time 0.04 seconds

Temperature Measurement of Silicon Wafers Using Phase Estimation of Acoustic Wave (음향파의 위상 추정을 이용한 실리콘 웨이퍼의 온도 측정)

  • Joonhyuk Kang;Lee, Seokwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.493-495
    • /
    • 2003
  • Accurate temperature measurement is a key factor to implement the rapid thermal processing(RTP). A temperature estimation method using acoustic wave has been proposed to overcome the inaccuracy and contamination problem of the previous methods. The proposed method, however, may suffer from the offset and low resolution problem since it is implemented in the time domain. This paper presents a temperature estimation method using the phase detection of acoustic wave. Based on the frequency domain approach, the proposed technique increases the resolution of the measured temperature and reduces the effect of noise. We investigate the performance of the proposed method via experiments.

Estimation of Compressive Strength of Fly Ash Concrete subjected to High Temperature (고온조건하에서 플라이애시를 사용한 콘크리트의 압축강도증진 해석)

  • Han Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.99-105
    • /
    • 2006
  • In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

Estimation of Compressive Strength of Concrete Using Blast Furnace Slag Subjected to High Temperature Environment (고온환경 조건하에서 고로슬래그를 사용한 콘크리트의 압축강도 증진 해석)

  • Han, Min-Cheol;Shin, Byung-Cheol
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.347-355
    • /
    • 2007
  • In this paper, estimation of the compressive strength of the concrete incorporating blast furnace slag subjected to high temperature was discussed. Ordinary Portland cement and blast furnace slag cement (BSC;30% of blast furnace slag) were used, respectively. Water to binder ratio ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also chosen for the experimental parameters, respectively. At the high temperature, BSC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated latent hydration reaction subjected to high temperature. For the strength estimation, the Logistic model based on maturity equation and the Carino model based on equivalent age were applied to verify the availability of estimation model. It was found that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

Estimation of Hardening Layer Depths in Laser Surface Hardening Processes Using Neural Networks (레이져 표면 경화 공정에서 신경회로망을 이용한 경화층 깊이 예측)

  • Woo, Hyun Gu;Cho, Hyung Suck;Han, You Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.52-62
    • /
    • 1995
  • In the laser surface hardening process the geometrical parameters, especially the depth, of the hardened layer are utilized to assess the integrity of the hardening layer quality. Monitoring of this geometrical parameter ofr on-line process control as well as for on-line quality evaluation, however, is an extremely difficult problem because the hardening layer is formed beneath a material surface. Moreover, the uncertainties in monitoring the depth can be raised by the inevitable use of a surface coating to enhance the processing efficiency and the insufficient knowledge on the effects of coating materials and its thicknesses. The paper describes the extimation results using neural network to estimate the hardening layer depth from measured surface temperanture and process variables (laser beam power and feeding velocity) under various situations. To evaluate the effec- tiveness of the measured temperature in estimating the harding layer depth, estimation was performed with or without temperature informations. Also to investigate the effects of coating thickness variations in the real industry situations, in which the coating thickness cannot be controlled uniform with good precision, estimation was done over only uniformly coated specimen or various thickness-coated specimens. A series of hardening experiments were performed to find the relationships between the hardening layer depth, temperature and process variables. The estimation results show the temperature informations greatly improve the estimation accuracy over various thickness-coated specimens.

  • PDF

A Study on the Tool Temperature Estimation for Different Cutting Conditions in Turning Using a Statistical Method (통계적 기법을 이용한 선삭가공 절삭조건에 따른 공구온도 예측)

  • 송길용;문홍현;박병규;김성청;이응석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.96-102
    • /
    • 2002
  • This study is on the estimation method of toot temperature for different tool nose radius and cutting conditions in turning. Experimental analysis has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using a thermo-couple which is embedded in the insert tip. Using multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for the different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for a tool temperature estimation technique. The result indicates that the tool temperature decreases for increasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut. This method will be useful for the estimation of tool life and temperature using limited experimental data for given cutting conditions.

An Estimation of a Billet Temperature during Reheating Furnace Operation

  • Jang, Yu-Jin;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • Reheating furnace is an essential facility of a rod mill plant where a billet is heated to the required rolling temperature so that it can be milled to produce wire. Although it is very important to obtain information on billet temperatures, it is not feasible during furnace operation. Consequently, a billet temperature profile should be estimated. Moreover, this estimation should be done within an appropriate time interval for an on-line application. In this paper, a billet heat transfer model based on 2D FEM(Finite Element Method) with spatially distributed emission factors is proposed for an on-line billet temperature estimation and also a measurement is carried out for two extremely different furnace operation patterns. Finally, the difference between the model outputs and the measurements is minimized by using a new optimization algorithm named uDEAS(Univariate Dynamic Encoding Algorithm for Searches) with multi-step tuning strategy. The obtained emission factors are applied to a simulation for the data which are not used in the model tuning for validation.

Estimated Temperature Error Compensation for Wavelength-Band Conversion of Infrared Image (적외선영상의 파장대역변환을 위한 추정온도 오차 보정)

  • Kim, Young-Choon;Ahn, Sang-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1270-1278
    • /
    • 2014
  • The modern infrared (IR) imaging systems use mainly one or more wavelength bands among short wavelength IR (SWIR), middle wavelength IR (MWIR), and long wavelength IR (LWIR) bands. In the process of IR image synthesis and modeling, IR image wavelength-band conversion which transforms arbitrary band image to other band one is required. The wavelength-band conversion procedure includes a temperature estimation process of an object surface. However, in this procedure, an approximated Planck's radiation equation causes errors in estimated temperature. In this paper, we propose an estimation temperature error attenuation method in IR image band conversion procedure. The estimated temperature is corrected with a slope information of radiance according to it. The corrected temperature is used for generation of the other band IR image. The verification of proposed method is demonstrated through the simulation.

Estimation of the Compressive Strength of the Concrete incorporating Mineral Admixture based on the Equivalent Age Method (등가재령방법에 의한 혼화재 종류별 콘크리트의 압축강도 증진해석)

  • Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.71-77
    • /
    • 2007
  • This paper is to investigate the effect of the curing temperature on strength development of concrete incorporating cement kiln dust(CKD) and blast furnace slag (BS) quantitatively. Estimation of the compressive strength of the concrete was conducted using the equivalent age equation and the rate constant model proposed by Carino. Correction of Carino model was studied to secure the accuracy of strength development estimation by introducing correction factors regarding rate constant and age. An increasing curing temperature results in an increase in strength at early age, but with the elapse of age, strength development at high curing temperature decreases compared with that at low curing temperature. Especially, the use of BS has a remarkable strength development at early age and even at later age, high strength is maintained due to accelerated pozzolanic activity resulting from high temperature. Whereas, at low curing temperature, the use of BS leads to a decrease in compressive strength. Accordingly, much attention should be paid to prevent strength loss at low temperature. Based on the strength development estimation using equivalent age equation, good agreements between measured strength and calculated strength are obtained.

Study on the tool temperature estimation for different cutting conditions in turning using a statistical method (통계적 기법을 이용한 선삭 가공 절삭조건에 따른 공구온도 예측)

  • 김성청;이응석;문홍현;송길용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.851-856
    • /
    • 1997
  • This study is on the estimation of the tool temperature for different tool nose radius and cutting conditions in turning. The experiment has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using thermo-couple which is embedded in the insert tip. Using a multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for the tool temperature estimation. The result indicates that the tool temperature decreases for ~ncreasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut.

  • PDF

Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes (레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측)

  • 우현구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.