• Title/Summary/Keyword: Temperature Record

Search Result 164, Processing Time 0.029 seconds

Global Warming Detected by Tree Rings from Mongolia

  • Nachin, Baatarbileg;Jacoby, Gordon C.
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2003
  • In the year 2000 we culminated a successful five year investigation of climate change by completing a preliminary east-west transect across Mongolia. An earlier tree-ring study at Tarvagatay Pass, Mongolia indicated unusual warming during the 20th century similar to other paleo-investigations of the northern hemisphere. This record had represented one of the few tree-ring records for central Asia. New data from several sites in western Mongolia confirmed the preliminary temperature. The highest twenty-year growth period for the composite record is from 1973-1994. The western Mongolian record was significantly correlated with the Taimyr Peninsula and two northern hemisphere temperature reconstructions reflecting large-scale temperature patterns while showing some important regional differences. These differences should prove useful for climate models. We have also developed a millennial length temperature-sensitive record at the Solongotyin Davaa site (formerly Tarvagatay Pass) using relict wood and living trees. Conspicuous features over the last 1000 years are a century scale temperature decline punctuated by the end of the Little Ice Age in the late-1800s and 20th century warming. The record also shows a cold period early in the 12th century and warm intervals late in the 10th, early in the 15th and at end of the 18th centuries. Despite a limited sample size before 900 AD, the long Solongotyin Davaa record is useful in indicating severe cold events and suggests some cold intervals nearly as severe. These tree ring series, spanning much of the circumpolar northern treeline, have been compiled to create a long-term reconstruction of the Earth's temperature over centuries. The new chronology, in addition to its value as a detailed record of Mongolian climate, provides independent corroboration for such hemispheric and global reconstructions and their indications of unusual warming during the 20th century.

  • PDF

CLIMATIC TRENDS OF SOME PARAMETERS OF THE SOUTHERN OCEAN DERIVED FROM REMOTE SENSING DATA

  • Lebedev, S.A.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1023-1026
    • /
    • 2006
  • As it was shown recently, climate changes in Antarctica resulted in interannual trends of some climatic parameters like sea level pressure, surface air temperature, ice thickness and others. These tendencies have effect on the Southern Ocean meteorological and hydrological regime. The following remote sensing data: AVHRR MCSST data, satellite altimetry data (merged data of mission ERS-2, TOPEX/Poseidon, Jason-1, ENVISAT, GFO-1) are used to analyse the interannual and/or climatic tendency of sea surface temperature (SST) and sea level anomaly (SLA). According to the obtained results, SST has negative trend $-0.02{\pm}0.003^{\circ}C/yr$ for 24-yr record (1982-2005) and SLA has positive trend $0.01{\pm}0.005$ cm/yr for 24-yr record (1982-2005) and $0.24{\pm}0.026$ cm/yr for 12-yr record (1993-2005). However in some areas (for example, Pacific-Antarctic Ridge) SST and SLA tendencies are stronger $-0.065{\pm}0.007^{\circ}C/yr$ and $-0.21{\pm}0.05$ cm/yr, respectively.

  • PDF

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

Characteristics and Synoptic Causes on the Abnormal Heat Occurred at Miryang in 2004 (2004년 밀양의 이상더위의 특징과 종관적 원인)

  • Byun, Hi Ryong;Hwang, Ho Seong;Go, Hye Young
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.187-201
    • /
    • 2006
  • During summer (JJA) of 2004, a record-high temperature in Korea appeared at Miryang ($38.5^{\circ}C$ on July 30). Moreover, Miryang showed the most frequent occurrence (25 days in JJA) of the daily highest temperature among observational sites in Korea. Based on meteorological analysis, it is found that this phenomenon is caused by neither the global warming effect nor the urban climate effect. It is caused by the mesoscale and synoptic and/or global scale atmospheric circulations, as evidenced by several factors described below. Firstly, the hottest areas have normally occurred not at a point but over an area, particularly along an axis connecting Sancheong and Daegu. But in 2004, this axis has moved southward and locates over Namhae-Miryang due to northerlies that were induced by the heating effect related to the low snow-cover on the Tibet Plateau. Secondly, although the maximum temperature was the highest among observational sites in Korea, the daily mean temperature and the number of nights with air temperature over $25^{\circ}C$ were not the highest at Miryang. Thirdly, the downdraft induced by the second circulation of typhoon and abnormal development of the North-Pacific High were found to have exerted an important role.

Automation of Lumber Drying System(I) -Continuously Rising Temperature Drying of Pinus densiflora- (목재건조(木材乾燥)의 자동화(自動化)에 관한 연구(硏究)(I) -연속온도상승(連續溫度上昇)스케쥴을 이용한 목재건조장치(木材乾燥裝置) 자동화(自動化)-)

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • An electrically heated experimental lumber dry kiln was retrofitted with a computer-based control system to control kiln conditions more precisely and monitor and record several kiln variables. Flat-sawn 2.5cm-thick Pinus densiflora boards were dried in constant temperature process(65$^{\circ}C$ & 50~60 %RH) and continuously rising temperature process, respectively. The average drying rate in continuously rising temperature process was 5.7 %/hr, which was above 3 times faster than that in constant temperature process. But, the average rate of case-hardening and moisture difference between shells and cores of boards dried in continuously rising temperature process were 82 % and 5.5 %, respectively, which were much larger than those of boards dried in constant temperature process.

  • PDF

An Experimental Study of the Temperature Characteristics of a Cutting Tool in Machining of Stainless Steel (스테인레스강 절삭가공에서 공구의 온도 특성에 대한 실험적 연구)

  • 권용기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 1996
  • This is an experimental investigation of the temperature generated in a cutting tool during the machining of stainless steel. The temperature results from the wear of the cutting tool are considered in order to investigate the relation between cause and effect of these factors. This possibility has been tested using a thermocouple technique to record temperature vs. time curves for a variety of cutting conditions. This is done by employing a thermocouple inserted on the tool tip near the major cutting edge. Temperature distributions are calculated using finite element method and compared to the contour maps measured by an optical system. It suggests that the temperature gradients and the tool performance will be dependent on certain facotrs in tool geometry when cutting this material.

  • PDF

Effect of Foehn Wind on Record-Breaking High Temperature Event (41.0℃) at Hongcheon on 1 August 2018 (2018년 8월 1일 홍천에서의 기록적인 고온 사례(41.0℃)에 영향을 준 푄 바람)

  • Kim, Seok-Hwan;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.199-214
    • /
    • 2021
  • A record-breaking high surface air temperature of 41.0℃ was observed on 1 August 2018 at Hongcheon, South Korea. In this study, to quantitatively determine the formation mechanism of this extremely high surface air temperature, particularly considering the contributions of the foehn and the foehnlike wind, observational data from Korea Meteorological Administration (KMA) and the Weather Research and Forecasting (WRF) model were utilized. In the backward trajectory analysis, trajectories of 100 air parcels were released from the surface over Hongcheon at 1600 LST on 1 August 2018. Among them, the 47 trajectories (38 trajectories) are tracked back above (below) heights of 1.4 km above mean sea level at 0900 LST 31 July 2018 and are defined as upper (lower) routes. Lagrangian energy budget analysis shows that for the upper routes, adiabatic heating (11.886 × 103 J kg-1) accounts for about 77% of the increase in the thermal energy transfer to the air parcels, while the rest (23%) is diabatic heating (3.650 × 103 J kg-1). On the other hand, for the lower routes, adiabatic heating (6.111 × 103 J kg-1) accounts for about 49% of the increase, the rest (51%) being diabatic heating (6.295 × 103 J kg-1). Even though the contribution of the diabatic heating to the increase in the air temperature rather varies according to the routes, the contribution of the diabatic heating should be considered. The diabatic heating is caused by direct heating associated with surface sensible heat flux and heating associated with the turbulent mixing. This mechanism is the Type 4 foehn described in Takane and Kusaka (2011). It is concluded that Type 4 foehn wind occurs and plays an important role in the extreme event on 1 August 2018.

A study on thermal properties of concrete using gang form coated with polyurethane (폴리우레탄 폼을 도포한 갱폼사용에 따른 콘크리트 온도이력특성)

  • Nam, Kyung-Yong;Won, Joon-Yuen;Kang, In-Seon;Jeon, Pan-Keun;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.11-12
    • /
    • 2011
  • This study examine Effect of Change of Compressive Strength of Concrete Members with Insulating Gang form on Temperature History of Concrete Positions. Test show, insulating gang forms differences and gang forms have 10℃ on peak point temperature of surface and Center if temperature history have 24Mpa by change of compressive strength. In addition, there have 14℃(16℃) on peak point temperature of surface and Center if temperature history have 40(60)Mpa. Therefore, insulating gang forms have an effect insulating performance.

  • PDF

Record-breaking High Temperature in July 2021 over East Sea and Possible Mechanism (2021년 7월 동해에서 발생한 극한 고온현상과 기작)

  • Lee, Kang-Jin;Kwon, MinHo;Kang, Hyoun-Woo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.17-25
    • /
    • 2022
  • As climate change due to global warming continues to be accelerated, various extreme events become more intense, more likely to occur and longer-lasting on a much larger scale. Recent studies show that global warming acts as the primary driver of extreme events and that heat-related extreme events should be attributed to anthropogenic global warming. Among them, both terrestrial and marine heat waves are great concerns for human beings as well as ecosystems. Taking place around the world, one of those events appeared over East Sea in July 2021 with record-breaking high temperature. Meanwhile, climate condition around East Sea was favorable for anomalous warming with less total cloud cover, more incoming solar radiation, and shorter period of Changma rainfall. According to the results of wave activity flux analysis, highly activated meridional mode of teleconnection that links western North Pacific to East Asia caused localized warming over East Sea to become stronger.

A new record of high temperature tolerance species, Pyropia kitoi com. nov.(Bangiaceae, Rhodophyta), from Korea

  • Dong Jin Kim;Paola Romero-Orozco;Gwan Woung Kim;Seong Hyeon Baek;Tae Oh Cho;Boo Yeon Won
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.223-228
    • /
    • 2023
  • Neoporphyra kitoi Ma. Abe, N. Kikuchi, Tamaki, Tom. Sato, Murase, Fujiyoshi & Mas. Kobayashi has been known as an endemic species in Japan. Its high temperature tolerance suggests that it could be advantageous for cultivation. In this study, we collected it from the Ulleungdo island, Korea and transferred it into Pyropia for a new combination, identified as Pyropia kitoi(Ma. Abe, N. Kikuchi, Tamaki, Tom. Sato, Murase, Fujiyoshi & Mas. Kobayashi) D.J. Kim, T.O. Cho & B.Y. Won comb. nov. based on morphological and molecular analyses. Pyropia kitoi is also reported as a new record species in the list of Korean macroalgal flora. Although we didn't observe the emergence of new blades from the rhizoidal cells, which is a key character for this species, our molecular analysis of rbcL revealed that our samples from Korea were congruent with "Neoporphyra kitoi" from Japan and were nested within the clade of Pyropia. The gene sequence divergence between the Korean and Japanese samples was 0-0.2%.