• Title/Summary/Keyword: Temperature baffle

Search Result 89, Processing Time 0.028 seconds

PIV Measurement of Flow Inside an Automotive HVAC Module with Varying Temperature Baffle (온도조절 격판 변화에 따른 차량용 HVAC 내부 유동의 PIV속도장 측정 연구)

  • Ji, Ho-Seong;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • Air flow inside an automotive HVAC module has been investigated using a high-resolution PIV technique with varying the temperature operation mode. The PIV system consists of a 2-head Nd:YAG laser (125 mJ), a high-resolution CCD camera (2K$\times$2K), optics and a synchronizer. A real automotive HVAC module was used directly under real operating condition. Some casing parts of the HVAC module were replaced with transparent windows for capturing clear flow images with laser light sheet beam illumination. Time-averaged velocity fields were obtained for two different temperature control modes. Flow characteristics of the air-conditioned air flow inside the automotive HVAC system for the two temperature baffle conditions were evaluated.

LARGE SCALE FINITE ELEMENT THERMAL ANALYSIS OF THE BOLTS OF A FRENCH PWR CORE INTERNAL BAFFLE STRUCTURE

  • Rupp, Isabelle;Peniguel, Christophe;Tommy-Martin, Michel
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1171-1180
    • /
    • 2009
  • The internal core baffle structure of a French Pressurized Water Reactor (PWR) consists of a collection of baffles and formers that are attached to the barrel. The connections are done thanks to a large number of bolts (about 1500). After inspection, some of the bolts have been found cracked. This has been attributed to the Irradiation Assisted Stress Corrosion Cracking (IASCC). The $Electricit\acute{e}$ De France (EDF) has set up a research program to gain better knowledge of the temperature distribution, which may affect the bolts and the whole structure. The temperature distribution in the structure was calculated thanks to the thermal code SYRTHES that used a finite element approach. The heat transfer between the by-pass flow inside the cavities of the core baffle and the structure was accounted for thanks to a strong thermal coupling between the thermal code SYRTHES and the CFD code named Code_Saturne. The results for the CP0 plant design show that both the high temperature and strong temperature gradients could potentially induce mechanical stresses. The CPY design, where each bolt is individually cooled, had led to a reduction of temperatures inside the structures. A new parallel version of SYRTHES, for calculations on very large meshes and based on MPI, has been developed. A demonstration test on the complete structure that has led to about 1.1 billion linear tetraedra has been calculated on 2048 processors of the EDF Blue Gene computer.

A study on heat transfer characteristics and pressure drop of heat transfer by baffle cut rate (배플 플레이트를 갖는 열교환기의 열전달 및 압력강하에 관한 연구)

  • Bae, Sung-Woo;Choi, Soon-Ho;Yoon, Seok-Hoon;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.172-177
    • /
    • 2005
  • The object of this experiment is comparing heat transfer performance and pressure drop characteristics by baffle cut rate, fluid velocity and heating temperature. Experiments were carried out in cross flow heat exchanger with water as a working fluid. In this experiment, baffle cut rate is 30%, 40%, 50%, velocity is 0.5m/s, 1.0m/s, 1.5m/s, and heating temperature is $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$. An experimental device to measure the heat transfer coefficient was constructed. The experimental result were obtained for the fully developed turbulent flow of water in tube on the condition of uniform heat flux.

  • PDF

A Study on Effects of the Fluid Flow Inner the Open Chamber by Baffle (배플에 의한 개방챔버 내부 유동의 영향에 관한 연구)

  • No, Byeang-Su;Choi, Joo-Yol;Jungr, Ha-Gyoon;Choe, Sang-Bom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.255-260
    • /
    • 2015
  • Flash evaporation phenomenon is affected by temperature, pressure and water level in the open chamber and Baffle etc. In this study, PIV experiments were conducted to ensured the flow Characteristics in the open chamber, and optimum baffle location and baffle height. Baffle had a considerable effect on the recirculation flow, hydraulic jump and the flow characteristics in the Open chamber, and influence of Reynolds number was insignificant. The optimum baffle height was about h/H=1.5. and optimum baffle location was x/H=1.5 from the inlet of open chamber.

A Study on the Shell Wall Thinning by Flow Acceleration Corrosion and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (유동가속부식으로 인한 급수가열기 동체 감육현상 규명과 완화 방안 및 충격판 설계개선에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, In-Tae
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.83-93
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, four different types of impingement baffle plate-squared, curved, mitigating type and multi-hole type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type and multi-hole type baffle plate are more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Shell Wall Thinning and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 동체 감육 현상과 완화 방안 및 충격판 설계개선)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Park, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.55-63
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, three different types of impingement baffle plate-squared, curved and mitigating type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type baffle plate is more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

Ductility Degradation Assessment of Baffle Former Assembly Considering the Stress Triaxiality Effect (응력 삼축성을 고려한 원자로 내부구조물 배플포머 집합체의 연성저하 평가)

  • Kim, Jong-Sung;Park, Jeong Soon;Kang, Sung-Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.50-57
    • /
    • 2016
  • The study presents structural integrity assessment of ductility degradation of a baffle former assembly by performing finite element analysis considering real loading conditions and stress triaxiality. Variations of fracture strain curves of type 304 austenitic stainless steel with stress triaxiality are derived based on the previous study results. Temperature distributions during normal operation such as heat-up, steady state, and cool-down are calculated via finite element temperature analysis considering gamma heating and heat convection with reactor coolant. Variations of stress and strain state during long operation period are also calculated by performing sequentially coupled temperature-stress analysis. Fracture strain is derived by using the fracture curve and the stress triaxility. Finally, variations of ductility degradation damage indicator with the fracture strain and the equivalent inelastic strain are investigated. It is found that maximum value of the ductility degradation damage index continuously increases and becomes 0.4877 at 40 EFPYs. Also, the maximum value occurs at top and middle inner parts of the baffle former assembly before and after 20 EFPYs, respectively.

A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure (차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구)

  • 박경우;이주형;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.

Analysis on Characteristics of Behavior of Thermal Flow According to Operation Conditions of Small-sized Shell and Tube-type Heat Exchanger (소형 쉘앤튜브형 열교환기의 운전 조건에 따른 열유동 거동 특성 해석)

  • Young-Joon Yang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1109-1115
    • /
    • 2023
  • The shell and tube-type heat exchanger was the most utilized in industrial field because of its simple structure and wide operation conditions and so on. This study was performed to investigate the characteristics of behavior of thermal flow according to operation condition of small-sized shell and tube-type heat exchanger. The operation conditions, here, were set up to flow rate of hot air with temperature of 100℃, number of baffle and cut rate of baffle(BCR) using numerical analysis. As the results, both mean relative pressure and relative pressure drop was increased with quadratic curve in case of less than BCR 25%, however, decreased linearly in case of more than BCR 25%. The collision with first baffle by flow velocity and temperature, of hot air, respectively, was depended on BCR. Further it showed that the behaviors between flow velocity and temperature were almost similar.

The Numerical Study on the Cobustion Characteristics and the Heat Transfer Characteristics of Heat Exchanger for Condensing Gas Boiler (응축형 가스보일러 연소기의 연소특성 및 열교환기의 열전달특성에 관한 수치적 연구)

  • Kim, S.C.;Kum, S.M.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.71-78
    • /
    • 2001
  • It was numerically studied that characteristics of fluid flow and heat transfer in a tube with disk and annular baffle for heat exchanger of condensing boiler. Using a finite volume technique and CFD code, STAR-CD, the governing equations were solved and the temperature and flow fields were investigated. The interval between tube and annular baffle, height and diameter of baffle were selected as important design parameters, and the effects of these parameters on heat transfer and fluid flow were studied. As a result, in the case of with interval, the pressure was decreased but heat transfer was increased. Also heat transfer was slowly increased as the size of disk and annular baffle were increased and the distance between baffles were decreased.

  • PDF