• Title/Summary/Keyword: Temperature calibration

Search Result 515, Processing Time 0.035 seconds

Calibration Equation for VTA Including the Effect of Ambient Temperature Drift (온도변화를 고려한 가변온도형 열선유속계의 교정식)

  • Lee, Shin-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.99-104
    • /
    • 2000
  • Calibration equation for Variable Temperature Anemometer(VTA) has been tested for measured velocity-output data and the calibration process has been compared with that of Constant Temperature Anemometer(CTA). VTA has greater sensitivity than that of any other conventional anemometers, but to be more popular technique in flow field measurement, simple, accurate and well established calibration process should be suggested. To meet this purpose, similar calibration method used for CTA has been adopted for VTA and finally calibration equation for VTA including the effect of temperature drift has been proposed.

  • PDF

Effects of the in-process calibration from IR detector for thermal diffusivity measurement by laser flash method (레이저 섬광법에 의한 열확산계수 측정시 적외검출소자에서 실시간 온도보정이 미치는 영향)

  • 이원식;배신철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.795-802
    • /
    • 1998
  • For measuring the thermal diffusivity by laser flash method, raw data have to be calibrated using temperature data. We have developed in-process calibration method and polynomial calibration in which thermal diffusivity can be calibrated during measuring, This method is different from existing temperature pre-process calibration method and exponential calibration having various source of error. Using this new calibration method, measurement accuracy was improved about 1∼2% compare to the value by the existing method. We also studied more accurate fitting curve as in Figure 4 was shown the result of measuring output characteristics of IR radiometer with temperature. As illustrated in data, in-process calibration method and polynomial calibration equation is proper than pre-process calibration method and exponential calibration.

  • PDF

Experimental method and evaluation of the calibration capability for the national calibration centers using the platinum resistance temperature sensors (백금저항온도센서를 이용한 국가교정기관의 교정능력 평가 및 실험방법)

  • Gam, Kee-Sool;Yoo, Sung-Ho;Kim, Sung-Min;Lee, In-Sick
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.231-236
    • /
    • 2005
  • Calibration capability was evaluated using the reference-grade platinum resistance thermometer (PRT) in the temperature range of $-50^{\circ}C$ to $250^{\circ}C$ for the national calibration centers. The reference-grade PRT was calibrated at the several fixed points, which was composed by the freezing points of Sn, In, the melting point of Ga and the triple point of water and Hg, before and after the round-robin test (RRT) experiments. The temperature scale of reference-grade PRT was compared to the local standard PRT's using the system of the national calibration centers. $E_{n}$ values was calculated by the temperature difference between the reference-grade PRT and the local standard PRT, and the best measurement capability. Finally, the capability of the national calibration centers was evaluated by the $E_{n}$ values.

Performance Assessment on Temperature Calibration Capability of the Calibration Laboratories Using High-Precision Platinum Resistance Thermometers (고정밀 백금저항온도계를 이용한 교정기관의 온도교정능력 수행평가)

  • Gam, Kee Sool;Lee, Young Hee;Yang, Inseok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.415-420
    • /
    • 2013
  • Calibration capabilities for thermometer calibration by comparison method were assessed using high-precision industrial platinum resistance thermometers (IPRT). It was found in the performance assessment that out of 31 laboratories who participated, 28 laboratories resulted magnitude of En number less than 1 at every calibration points they submitted results in the range from 50 to $500^{\circ}C$. The results of about 75% of the laboratories showed the difference from the assigned values less than 1/10 of the tolerance level of the class B IPRT. This indicates that the participating calibration laboratories performed with satisfactory level that was enough to calibrate IPRTs to significant precision. The sensors used in this work were manufactured and chosen by the criteria of long-term instability less than 4 mK and hysteresis less than 8 mK in the temperature range used in this work. Furthermore, the change in the resistance of the sensors in the calibration temperature range were less than the uncertainty of the calibration, 25 mK (k=2).

Study on the partially premixed flames produced by a coflow burner as temperature calibration source (동축류 버너에서 생성된 부분 예혼합 화염을 이용한 화염 온도 측정 검정원 연구)

  • Park, Chul-Woung;Hahn, Jae-Won;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.160-167
    • /
    • 2000
  • We investigated a uniform temperature zone, produced by double flame structure of a coflow CH4/air partially premixed flame, to be used as a temperature calibration source for laser diagnostics. A broadband N2 CARS(coherent anti-Stokes Raman spectroscopy) system with a modeless laser was used for temperature measurement. When the stoichiometric ratio was 1.5, we found the uniform temperature zone in radial direction of the flame of which the averaged temperature was 2110 K with standard deviation 24 K. In the stoichiometric ratio range between 2.0 and 2.5, we found very stable temperature-varying zones in vertical direction at the center of the flame. The size of the zone was approximately 15 mm and it covered a temperature range from 300 K to 1900 K. We also suggest that this zone can be used as a calibration source for 2-D PLIF(planar laser induced flurescence) temperature measurement.

  • PDF

Teleoperate Temperature Calibration via Internet

  • Moonchaisook, Watakarn;Chaikla, Amphawan;Trisuwannawat, Thanit;Tammarungwattana, Narin;Julsereewong, Prasit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1438-1442
    • /
    • 2003
  • This paper presents the calibration service for the temperature sensor via the Internet. The purpose of the calibration service is to provide the teleoperate calibration procedure without skillful technician requirement at the client site. Besides the automatic measurement equipment that eases the operation, the developed software emphasizes the reliability of operation, simplifying the measurement data recording and processing, and achieving quality of the temperature measurements.

  • PDF

Development of the automatic calibration system for industrial resistance thermometers at low temperatures (산업용 저항 온도계의 저온 자동 비교 교정 시스템 개발)

  • Yang, In-Seok;Song, Chang-Ho;Kang, Kee-Hoon;Kim, Yong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.429-436
    • /
    • 2008
  • A system is designed and fabricated for the automatic low temperature calibration by comparison of industrial resistance thermometers. The cryostat is suitable for the calibration of four capsule type thermometers and four long stem thermometers. By the automatic temperature control of the cryostat, we could calibrate thermometers from $-200^{\circ}C$ to $0^{\circ}C$ for ${\sim}15$ hours by one fill of liquid nitrogen in the test run of the system. The uncertainty of the calibration for industrial platinum resistance thermometers using the automatic system is about 30mK with a 95.% confidence interval.

Establishment of CTD Calibration System and Uncertainty Estimation (CTD 교정 시스템 구축 및 불확도 평가)

  • Lee, Jung-Han;Hwang, Keun-Choon;Kim, Eun-Soo;Lee, Seung-Hun
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.77-85
    • /
    • 2014
  • The quality control of ocean observations data is becoming a major issue as real-time observational data and information services have increased recently. Therefore, it is necessary for oceanographic instruments to calibrate. In this paper, we first introduce the CTD calibration system and traceability. Next, CTD calibration procedures and estimation of uncertainty of measurement are described. The expanded uncertainty (k = 2) of the temperature, pressure and conductivity are 0.$0.003^{\circ}C$, $6.0{\times}10^{-5}$ and 0.006 mS/cm respectively. Finally, the excellence of CTD calibration and its measurement capability has been proven by comparing the inter-calibration result of KIOST and Sea-Bird Electronics (SBE). CTD calibration residuals are less than ${\pm}0.0001^{\circ}C$, ${\pm}0.001$ MPa, ${\pm}0.0001$ S/m for SBE 3plus temperature sensor, SBE 19plus pressure sensor and SBE 4C conductivity sensor respectively.

Radiometric Calibration of FTIR Spectrometer For Passive Remote Sensing Application (수동형 원격탐지 FTIR 분광계의 Radiometric Calibration)

  • Kim, Dae-Sung;Park, Do-Hyun;Choi, Seung-Ki;Ra, Sung-Woong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.391-395
    • /
    • 2006
  • In this paper, radiometric calibration of a FTIR spectrometer for passive remote sensing application was introduced and verified. Radiometric calibration is a significant signal processing procedure to retrieve the object radiance from the measured spectrum. The object radiance is measured and registered distorted by the detector's responsivity dependent on wavelength and instrument self-emission. Radiance of two temperature points, hot temperature and cold temperature, from a well-controlled blackbody was measured and used to obtain the scale factor and offset factor which are required for radiometric calibration. For gas phase C2H5OH. radiometric calibration was done and verified through comparison of its emission line width and intensity with the standard spectrum.

A Study on the Calibration Technique of RTD and Thermocouple System (온도교정기 RTD 저항 및 열전대 직류전압 교정기법 연구)

  • Oh, Kwang-suk;Lee, Wangheon
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.439-448
    • /
    • 2016
  • RTDs and thermocouple sensors are broadly used to measure its temperature in industry and research. The contents of this standard calibration procedure(SCP) describe procedures related to the calculation of Electrical Temperature Calibrator and show different ways to indicate the calibration results like the uncertainty in measurement. As of current, SCP of electrical temperature calibrator has not been established yet and we have some inconveniences and difficulties in the standard calibration work. To solve these problems, we have studied the calibration technique for RTD and thermocouple of temperature calibrator. In this paper, we present the mathematic model of its data and variations of measurement with the results of calibration data.