• Title/Summary/Keyword: Terahertz

Search Result 252, Processing Time 0.022 seconds

Terahertz Time Domain Spectroscopy, T-Ray Imaging and Wireless Data Transfer Technologies

  • Paek, Mun-Cheol;Kwak, Min-Hwan;Kang, Seung-Beom;Kim, Sung-Il;Ryu, Han-Cheol;Choi, Sang-Kuk;Jeong, Se-Young;Kang, Dae-Won;Jun, Dong-Suk;Kang, Kwang-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.158-165
    • /
    • 2010
  • This study reviewed terahertz technologies of time domain spectroscopy, T-ray imaging, and high rate wireless data transfer. The main topics of the terahertz research area were investigation of materials and package modules for terahertz wave generation and detection, and setup of the terahertz system for time domain spectroscopy(TDS), T-ray imaging and sub-THz wireless communication. In addition to Poly-GaAs film as a photoconductive switching antenna material, a table-top scale for the THz-TDS/imaging system and terahertz continuous wave(CW) generation systems for sub-THz data transfer and narrow band T-ray imaging were designed. Dielectric properties of ferroelectric BSTO($Ba_xSr_{1-x}TiO_3$) films and chalcogenide glass systems were characterized with the THz-TDS system at the THz frequency range. Package modules for terahertz wave transmitter/receiver(Tx/Rx) photoconductive antenna were developed.

Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

  • Boyan Zhang;Siyu Qian;Bo Peng;Bo Su;Zhuang Peng;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.

Terahertz Spectroscopy and Molecular Dynamics Simulation of Five Citrates

  • Siyu Qian;Bo Peng;Boyan Zhang;Jingyi Shu;Zhuang Peng;Bo Su;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.86-96
    • /
    • 2024
  • This research investigation employs a terahertz (THz) time-domain spectroscopy system to study the terahertz spectral characteristics of five different citrates in both solution and solid state. The citrates under examination are lithium citrate, monosodium citrate, disodium citrate, trisodium citrate, and potassium citrate. The results show that the THz absorption coefficients of the first four citrate solutions exhibit a decreasing trend with increasing concentration. However, the potassium citrate solution shows an opposite phenomenon. At the same time, the absorption coefficients of lithium citrate, trisodium citrate, and potassium citrate solutions are compared at the same concentration. The results indicate that the absorption coefficient of citrate solution increases in proportion to the increase of metal cation radius, which is explained from the perspective of the influence of metal cations on hydrogen bonds. In addition, we also study the absorption peaks of solid citrates, and characterize the formation mechanism of the absorption peaks by molecular dynamics simulations. This methodology can be further extended to the study of multitudinous salts, presenting theoretical foundations for the detection in food and medicine industries.

Nondestructive Evaluation in the Defects of FRP Composites By Using Terahertz Waves (테라헤르츠파를 이용한 FRP 복합재료의 비파괴결함평가)

  • Im, Kwang-Hee;Kim, Ji-Hoon;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2012
  • A study of terahertz waves was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The terahertz systems were consisted of time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both non-conducting polymeric composites and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. The CFRP (Carbon fiber reinforced plastics) laminates were utilized for confirming the experimentation in the terahertz NDE. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field direction of the terahertz waves and the intervening fiber directions. A refractive index (n) was defined as one of mechanical properties; so a method was obtained in order solve the "n" in the material with non-conductivity. The usefulness and limitations of terahertz radiation are investigated for the NDE of FRP composites.

Photonics-based Terahertz Wireless Communication (포토닉스 기반 테라헤르츠 무선통신 기술 동향)

  • Kim, H.S.;Lee, E.S.;Park, D.W.;Lee, I.M.;Moon, K.;Choi, D.H.;Shin, J.H.;Kim, M.G.;Choi, K.S.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.75-85
    • /
    • 2019
  • The bandwidth of wireless communication is expected to grow exponentially due to the expansion of mobile devices and the increase of real-time and realistic multimedia services. Recently, the studies on terahertz band wireless communication have been actively conducted for the next generation communication after 5G wireless communication. The terahertz band, which is the unallocated frequency band, has been applied to the non-contact, non-destructive quality inspection industry such as the terahertz imaging and spectral systems through the development of terahertz generating and detecting components. This article briefly describes recent research trends on terahertz wireless communication technologies and introduces the details of photonics-based terahertz devices and systems that have been focused on the Terahertz Basic Research Section of Electronics and Telecommunication Research Institute.

In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source

  • Chung, Youngchul
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.461-465
    • /
    • 2020
  • A dual-mode laser terahertz source consisting of two in-line distributed Bragg reflector (DBR) laser diodes (LD) is proposed. It is less susceptible to residual reflections from facets than an in-line dual-mode distributed feedback (DFB) LD. The characteristics of the proposed terahertz source are theoretically investigated using a split-step time-domain simulation. It is shown that terahertz waves of frequencies from 385 GHz to 1725 GHz can be generated by appropriate thermal tuning of two DBR LDs. The dual-mode DBR LD terahertz source exhibits good spectral quality for residual facet reflectivity below 0.02, but facet reflectivity of the in-line dual-mode DFB LD terahertz source should be below 0.002 to provide similar spectral quality.

Guided Wave THz Spectroscopy of Explosive Materials

  • Yoo, Byung-Hwa;Kang, Seung-Beom;Kwak, Min-Hwan;Kim, Sung-Il;Kim, Tae-Yong;Ryu, Han-Cheol;Jun, Dong-Suk;Paek, Mun-Cheol;Kang, Kwang-Yong;Chung, Dong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.42-50
    • /
    • 2011
  • One of the important applications of THz time-domain spectroscopy (TDS) is the detection of explosive materials through identification of vibrational fingerprint spectra. Most recent THz spectroscopic measurements have been made using pellet samples, where disorder effects contribute to line broadening, which results in the merging of individual resonances into relatively broad absorption features. To address this issue, we used the technique of parallel plate waveguide (PPWG) THz-TDS to achieve sensitive characterization of three explosive materials: TNT, RDX, and HMX. The measurement method for PPWG THz-TDS used well-established ultrafast optoelectronic techniques to generate and detect sub-picosecond THz pulses. All materials were characterized as powder layers in 112 ${\mu}m$ gaps in metal PPWG. To illustrate the PPWG THz-TDS method, we described our measurement by comparing the vibrational spectra of the materials, TNT, RDX, and HMX, applied as thin powder layers to a PPWG, or in conventional sample cell form, where all materials were placed in Teflon sample cells. The thin layer mass was estimated to be about 700 ${\mu}g$, whereas the mass in the sample cell was ~100 mg. In a laboratory environment, the absorption coefficient of an explosive material is essentially based on the mass of the material, which is given as: ${\alpha}({\omega})=[ln(I_R({\omega})/I_S({\omega}))]m$. In this paper, we show spectra of 3 different explosives from 0.2 to 2.4 THz measured using the PPWG THz-TDS.

Surface Emitting Terahertz Transistor Based on Charge Plasma Oscillation

  • Kumar, Mirgender;Park, Si-Hyun
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.544-550
    • /
    • 2017
  • This simulation based study reports a novel tunable, compact, room temperature terahertz (THz) transistor source, operated on the concept of charge plasma oscillation with the capability of radiating within a terahertz gap. A vertical cavity with a quasi-periodic distributed-Bragg-reflector has been attached to a THz plasma wave transistor to achieve a monochromatic coherent surface emission for single as well as multi-color operation. The resonance frequency has been tuned from 0.5 to 1.5 THz with the variable quality factor of the optical cavity from 5 to 290 and slope efficiency maximized to 11. The proposed surface emitting terahertz transistor is able to satisfy the demand for compact solid state terahertz sources in the field of teratronics. The proposed device can be integrated with Si CMOS technology and has opened the way towards the development of silicon photonics.

Incident-angle-based Selective Tunability of Resonance Frequency in Terahertz Planar Metamolecules

  • Lim, A Young;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.590-597
    • /
    • 2022
  • We carry out numerical simulations of the responses of planar metamaterials composed of metamolecules under obliquely incident terahertz waves. A Fano-like-resonant planar metamaterial, with two types of resonance modes originating from the two meta-atoms constituting the meta-molecules, exhibits high performance in terms of resonance strength, as well as the outstanding ability to manipulate the resonance frequency by varying the incident angle of the terahertz waves. In the structure, the fundamental electric dipole resonance associated with Y-shaped meta-atoms is highly tunable, whereas the inductive-capacitive resonance of C-shaped meta-atoms is relatively omnidirectional. This is attributed to the electric near-field coupling between the two types of meta-atoms. Our work provides novel opportunities for realizing terahertz devices with versatile functions, and for improving the versatility of terahertz sensing and imaging systems.