• Title/Summary/Keyword: Terahertz Wave

Search Result 87, Processing Time 0.02 seconds

Terahertz Time Domain Spectroscopy, T-Ray Imaging and Wireless Data Transfer Technologies

  • Paek, Mun-Cheol;Kwak, Min-Hwan;Kang, Seung-Beom;Kim, Sung-Il;Ryu, Han-Cheol;Choi, Sang-Kuk;Jeong, Se-Young;Kang, Dae-Won;Jun, Dong-Suk;Kang, Kwang-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.158-165
    • /
    • 2010
  • This study reviewed terahertz technologies of time domain spectroscopy, T-ray imaging, and high rate wireless data transfer. The main topics of the terahertz research area were investigation of materials and package modules for terahertz wave generation and detection, and setup of the terahertz system for time domain spectroscopy(TDS), T-ray imaging and sub-THz wireless communication. In addition to Poly-GaAs film as a photoconductive switching antenna material, a table-top scale for the THz-TDS/imaging system and terahertz continuous wave(CW) generation systems for sub-THz data transfer and narrow band T-ray imaging were designed. Dielectric properties of ferroelectric BSTO($Ba_xSr_{1-x}TiO_3$) films and chalcogenide glass systems were characterized with the THz-TDS system at the THz frequency range. Package modules for terahertz wave transmitter/receiver(Tx/Rx) photoconductive antenna were developed.

Terahertz Imaging Using Compact Continuous Wave Sub-Terahertz System (소형 CW Sub-THz 시스템을 이용한 테라헤르츠 이미징)

  • Jang, Jin-Seok;Kwon, Il-Bum;Yoon, Dong-Jin;Seo, Dae-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.340-351
    • /
    • 2010
  • This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generates 0.34 THz electromagnetic wave based on electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave.

Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System (소형 CW Sub-THz 이미징 시스템을 이용한 물체의 비파괴 이미징)

  • Jang, Jin-Seok;Kwon, Il-Bub;Yoon, Dong-Jin;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave.

In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source

  • Chung, Youngchul
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.461-465
    • /
    • 2020
  • A dual-mode laser terahertz source consisting of two in-line distributed Bragg reflector (DBR) laser diodes (LD) is proposed. It is less susceptible to residual reflections from facets than an in-line dual-mode distributed feedback (DFB) LD. The characteristics of the proposed terahertz source are theoretically investigated using a split-step time-domain simulation. It is shown that terahertz waves of frequencies from 385 GHz to 1725 GHz can be generated by appropriate thermal tuning of two DBR LDs. The dual-mode DBR LD terahertz source exhibits good spectral quality for residual facet reflectivity below 0.02, but facet reflectivity of the in-line dual-mode DFB LD terahertz source should be below 0.002 to provide similar spectral quality.

Nondestructive Evaluation in the Defects of FRP Composites By Using Terahertz Waves (테라헤르츠파를 이용한 FRP 복합재료의 비파괴결함평가)

  • Im, Kwang-Hee;Kim, Ji-Hoon;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2012
  • A study of terahertz waves was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The terahertz systems were consisted of time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both non-conducting polymeric composites and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. The CFRP (Carbon fiber reinforced plastics) laminates were utilized for confirming the experimentation in the terahertz NDE. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field direction of the terahertz waves and the intervening fiber directions. A refractive index (n) was defined as one of mechanical properties; so a method was obtained in order solve the "n" in the material with non-conductivity. The usefulness and limitations of terahertz radiation are investigated for the NDE of FRP composites.

Fabrication of a Three-dimensional Terahertz Photonic Crystal Using Monosized Spherical Particles

  • Takagi, Kenta;Seno, Kazunori;Kawasaki, Akira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.374-375
    • /
    • 2006
  • Three-dimensional artificial crystals with periodicity corresponding to terahertz wave lengths were fabricated by self-assembling monosized metal spherical particles. The metal crystals were weakly sintered to utilize them as templates. The metal templates were inverted to air spheres crystal embedded in dielectric resin though infiltration and etching. The resulting resin inverted crystals clearly presented the photonic stop gaps within terahertz wave region and the frequencies of the gaps were confirmed to agree well with calculation by plane wave expansion method.

  • PDF

Millimeter and Terahertz Wave Circuit and System Technologies and Trends for Future Mobile Communications (미래 이동통신을 위한 밀리미터파와 테라헤르츠파 대역 회로 및 시스템 기술 동향)

  • Jang, S.;Kong, S.;Lee, H.D.;Park, J.;Kim, K.S.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • One of the most remarkable aspects of the recently completed 3GPP release-15 (5G new radio phase 1) is the fact that some millimeter-wave bands have been officially approved for 5G mobile communications. Because the demand for higher transmission capacity has only grown, other millimeter-wave or even higher-frequency terahertz-wave bands have attracted more attention over time. Based on this effort, this paper reviews and discusses the existing technologies and their trends in high-frequency circuits and systems at the millimeter and terahertz-wave bands, particularly for future mobile communications.

A Study of Image Enhancement Processing for Letter Extraction of Image Using Terahertz Signal (테라헤르츠 신호를 이용한 영상의 글자 추출을 위한 화질 개선처리에 대한 연구)

  • Kim, Seongyoon;Choi, Hyunkeun;Park, Inho;Kim, Youngseop;Lee, Yonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.111-115
    • /
    • 2017
  • Terahertz waves are superior to conventional X-ray or Magnetic Resonance Tomography(MRI), and the amount of information that can be transmitted is as large as thousands of times that conventional X-ray or MRI. In addition, Terahertz waves have great performance in analyzing an object which have some layered structure. By using this advantage, we can extract the letters of a page by analyzing information such as absorption amount and reflection amount by irradiating a closed book with pulses of various frequencies within gap of a terahertz wave. However, in the image of each page using the Terahertz wave might be obtained various kinds of noise and the different character occlusion region. So, to extract letters from the terahertz image, we must take the noise and occlusion region away. We have been working to enhancement the image quality in various ways, and keep on studying de-noising processing for enhancement about the image quality and high resolution. Finally, we also keep on studying about OCR(Optical Character Recognition) technology, which based on pattern matching technique, to read letters.

  • PDF

Enhanced Photoresponse of Plasmonic Terahertz Wave Detector Based on Silicon Field Effect Transistors with Asymmetric Source and Drain Structures

  • Ryu, Min Woo;Kim, Sung-Ho;Kim, Kyung Rok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.576-580
    • /
    • 2013
  • We investigate the enhanced effects of asymmetry ratio variations of the source and drain area in silicon (Si) field-effect transistor (FET). Photoresponse according to the variation of asymmetry difference between the width of source and drain are obtained by using the plasmonic terahertz (THz) wave detector simulation based on technology computer-aided design (TCAD) with the quasi-plasma 2DEG model. The simulation results demonstrate the potential of Si FETs with asymmetric source and drain structures as the promising plasmonic THz detectors.

Design and Experiment Results of High-Speed Wireless Link Using Sub-terahertz Wave Generated by Photonics-Based Technology

  • Kim, Sungil;Ahn, Seung-Ho;Park, Seong Su
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.578-586
    • /
    • 2013
  • Using a sub-terahertz (sub-THz) wave generated using a photonics-based technology, a high-speed wireless link operating at up to 10 Gbps is designed and demonstrated for realization of seamless connectivity between wireless and wired networks. The sub-THz region is focused upon because of the possibility to obtain sufficient bandwidth without interference with the allocated RF bands. To verify the high-speed wireless link, such dynamic characteristics as the eye diagrams and bit error rate (BER) are measured at up to 10 Gbps for non-return-to-zero pseudorandom binary sequence $2^{31}-1$ data. From the measurement results, a receiver sensitivity of -23.5 dBm at $BER=10^{-12}$ is observed without any error corrections when the link distance between the transmitter and receiver is 3 m. Consequently, we hope that our design and experiment results will be helpful in implementing a high-speed wireless link using a sub-THz wave.