• Title/Summary/Keyword: Ternary compound

Search Result 88, Processing Time 0.031 seconds

Preparation of Intermetallic Compound of Ternary Al-B-C System by Mechanical Alloying

  • Takahashi, Teruo;Yamashita, Michiru;Yamada, Kazutoshi;Kohzuki, Hidenori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1033-1034
    • /
    • 2006
  • Metallic compound of ternary Al-B-C system was prepared by mechanical alloying (MA) using Al, boron and graphite powders as starting materials. MA was carried out using Spex 8000 mixer/mill for 50 hours in an argon atmosphere without process control reagent such as methyl alcohol. The MA powders obtained were heat-treated in vacuum at the temperature of 873 and 1273 K for 5 hour. Pure ternary Al-B-C compound was obtained in the chemical content of Al:B:C=55:27:18. The ternary compound obtained in this study has a new phase whose crystal structure is not identified yet.

  • PDF

Structural and Electrical Properties of $CuInSe_2$ Ternary Compound Thin Film ($CuInSe_2$ 3원 화합물 박막의 전기적 구조적 특성)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Park, Joung-Yun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.258-259
    • /
    • 2005
  • [ $CuInSe_2$ ] thin films were fabricated at various fabrication conditions (substrate temperature, sputtering pressure, BC/RF power, vapor deposition, heat treatment). And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInSe_2$ thin films with stoichiometric composition. $CuInSe_2$ thin film was well made at the heat treatment of 500[$^{\circ}C$] of SLG/Cu/In/Se stacked elemental layer which was prepared by sputter and thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $1.27\sim9.88\times10^{17}[cm^{-3}]$, $49.95\sim185[cm^2/V{\cdot}s]$ and $10^{-1}\sim10^{-2}[\Omega{\cdot}cm]$, respectively

  • PDF

III-V 삼상 화합물 반도체의 분자선 결정성장법에서의 열역학적 고찰

  • O, Won-Ung;O, Jae-Eng;Baek, Su-Hyun
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.42-51
    • /
    • 1991
  • MBE 성장시 기판 표면에서의 성장과정을 운동론적 지배과정과 열역학적 지배과정으로 나누어 성장모델을 제시하였으며, 화학적 평형상태에서의 열역학이 III-V compound의 성장속도와 composition 에 미치는 영향을 기존의 보고된 결과 데이터와 비교 분석하였다. 특히 miscibility gap 내에 존재하는 III-V ternary compound의 경우 박막의 성질 및 소자의 특성에 영향을 미치는 alloy clustering은 저온 성장시 surface kinetics에 의해, 고온성장시에는 열역학적 spinodal decomposition에 의해 결정됨을 알수 있었다. 열역학적 모델에서는 기판과 layer사이의 lattice mismatch와 재료의 elastic coefficient의 함수인 additive strain Gibbs free energy, 그리고 ternary solid solution의 regular behavior를 가정하여 ternary alloy의 mixing에 기인한 excess Gibbs free energy를 고려하였다.

  • PDF

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

A Study on the Properties and Fabrication of $CuInSe_2$ Ternary Compound Thin Film ($CuInSe_2$ 3원 화합물 박막의 제작과 분석에 관한 연구)

  • Kim, Young-Jun;Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Joung-Yun;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.414-415
    • /
    • 2005
  • A solar cell is an element to transform the solar light energy into the electric energy in a moment. The single crystal element of high quality on which many studies were conducted in the past has a high efficiency of energy transformation, but its price competitiveness is so poor that it has failed to be popularized However, recently, in terms of an environment-friendly alternative energy, studies on applicability of the polycrystal solar cell have been actively under way. Among subject substances for such solar cell, $CuInSe_2$ has several good physical properties so that the greatest attention is paid to it as an optical absorption layer material for a low-cost solar cell of high efficiency. In order to manufacture the $CuInSe_2$ compound thin film, the unit element was deposited by using the sputtering method and the evaporation method and the heat treatment process was used in an electric furnace. Thereby, we intended to get a single-phase $CuInSe_2$ compound thin film.

  • PDF

Thermodynamic Study of Liquid Pb-Bi, Pb-Na, Bi-Na Binaries and Pb-Bi-Na Ternary Solutions (熔融 Pb-Bi, Pb-Na, Bi-Na 및 Pb-Bi-Na 系의 物理化學的硏究)

  • Koh, Chang-Shik
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 1962
  • This study was carried out to investigate the lead-bismuth-sodium ternary system which a basis of the Dittmer method as a part of "the fundamental study of pyrometallurgical debismuthizing of lead". Thermodynamic properties of each liquid Pb-Bi, Pb-Na binaries as well as liquid Pb-Bi-Na ternary solution were measured by e.m.f. of these concentration cells, and those of each component were also determined. Furthermore, iso-activity lines including Pb rich side composition of Pb-Bi-Na ternary solution were determined. The relationship between those thermodynamic characteristics and tendency of intermetallic compound formation was discussed through the above experiments.

  • PDF

A Study on the Properties and Fabrication of $CuInSe_2$ Ternary Compound Thin Film with Preparation Condition States (제작조건에 따른 $CulnSe_2$ 3원 화합물 박막의 제작과 분석에 관한 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;So, Soon-Youl;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.566-569
    • /
    • 2006
  • 태양전지는 태양광에너지를 바로 전기에너지로 전환시키는 소자이다. 과거에 많이 연구되던 고품질의 단결정 소자는 높은 에너지 변환효율을 가지고 있으나 가격 경쟁력이 크게 뒤져 일반화되지 못하였다. 최근에는 다결정 태양전지의 응웅 가능성에 대한 연구가 활발히 진행되어 오고 있다. 이중 $CuInSe_2$는 여러 가지 좋은 물성을 가지고 있어서, 저가의 고효율 태양전지를 위한 광흡수층 재료로 가장 주목받고 있다. $CuInSe_2$ 화합물 박막을 제조하기 위해 단위원소를 spttering법 과 Evaporeation법을 사용하여 증착하고 전기로에서 열처리 공정을 사용하여 single-phase 화합물 $CuInSe_2$ 박막을 얻고자 하였다.

  • PDF

The study on Accelerated Life-Time Reliability Test Methods of Ni-Mn-B ternary alloy Plating(electrodeposit) (Ni-Mn-B 삼원합금도금 가속수명 및 신뢰성 평가에 대한 연구)

  • Ma, Seung-hwan;Noh, young-tai;Jang, gun-ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2993-2999
    • /
    • 2015
  • Steel companies are applying Ni-B or Ni-Co alloy plating to protect the surface of Continuous casting mold, and they are using saccharin polish which causes crack on plating layer due to sulfur in saccharin. It is considered that the Ni-S compound causes the cracking and additional tensile stresses. The Ni-Mn-B ternary alloy plating was developed for suppression of crack by forming Mn-S compound before Ni-S compound is formed, but there were no domestic or international standard on the Ni-Mn-B alloy plating. Therefore, reliability evaluation standard was established to evaluate the newly developed Ni-Mn-B plating. To develop accelerating life testing method, FMEA(Failure Mode & Effective analysis) was used to analyze the cause of the main failure in plating. The Ni-Mn-B reliability standard included accelerating life test method, and it was categorized by the fundamental performance test, environment test, and accelerated life test, and was designed to guarantee 1 000 hours of B10 life with 80 % reliable level.

Synthesis of (Ti,Al)N Powder by Interdiffusion Nitriding Method (상호확산법에 의한 (Ti,Al)N계 복합질화물의 합성)

  • Lee, Young-Ki;Kim, Jung-Yeul;Kim, Dong-Kun;Sohn, Yong-Un
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.138-149
    • /
    • 1997
  • TiN and AlN are ceramic materials with extensive applications due to its excellent mechanical and chemical properties at elevated temperature. The purpose of this research is to develop the method for the synthesis of ternary nitride powder, titanium-aluminum-nitrogen system, which have an excellent property of both TiN and AlN. The ternary nitride such as $Ti_3AlN$, $Ti_2AlN$ and $Ti_3Al_2N_2$ can be synthesized by the interdiffusion nitriding method in Ar gas, however, the ternary nitride coexist with TiN, AlN, $Ti_3Al$ and ${\alpha}$-Ti. The ternary nitride are stable below $1400^{\circ}C$, but these are gradually decomposed into TiN, $Ti_3Al$ and AlN above $1400^{\circ}C$. The thermal oxidation characteristics of the Ti-Al-N compound synthesized by the interdiffusion nitriding method is superior to that of the TiN+AlN mixed powder, and the oxidation for both materials show the differential behaviors.

  • PDF