• Title/Summary/Keyword: The joint strength

Search Result 2,433, Processing Time 0.105 seconds

Modelling of Rock Joint Shear Strength Using Surface Roughness Parameter, Rs (표면 거칠기 계수 Rs를 이용한 암석 절리면 전단강도 모델)

  • 이석원;배석일;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.73-80
    • /
    • 2001
  • The shear strength of jointed rock is influenced by effective normal stress, joint wall compressive strength, joint roughness and so on. Since joint roughness makes considerable influences on shear strength of jointed rock, many studies tried to get quantitative joint roughness parameter. Until now, Joint Roughness Coefficient, JRC proposed by Barton has been prevalently used as a rock joint roughness parameter In spite of its disadvantages. In this study, a quantification of rock joint roughness is performed using surface roughness parameter, Rs. Proposed method is applied to rock core specimens, field joint surfaces, and JRC profiles. The scale of fluctuation is introduced to extend the suggested method to the large scale field joint surface roughness. Based on the quantification of joint surface roughness, joint shear tests are performed with the portable shear box. The relationship between joint surface roughness and joint shear strength is investigated and finally, a rock joint shear strength equation is derived from these results. The equation has considerable credibility and originality in that it is obtained from laboratory tests and expressed with quantified parameter.

  • PDF

Characteristics of Adhesive bonded Joints of Steels for Automobile(I) (자동차용 강판의 접착특성 - 접착부위 접합 강도와 영향인자 -)

  • 윤병현;권영각
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.106-114
    • /
    • 1995
  • The characteristics of adhesive bonded joint of steels for automobile were investigated. Shear and tear strength were tested and analyzed for the joints of cold rolled steel sheets bonded with three kinds of epoxy and urethane based adhesive. The results showed that the tensile shear strength and the tear strength of adhesive joint were affected by the shape of adhesive joint such as the length and width of adhesive joint. The thickness of adhesive layer was very important factor affecting the bonding strength. The shear strength increased with decrease of the thickness of adhesive layer, while the tear strength decreased as the thickness of adhesive layer decreased. In comparison with the strength of spot welded joint, the shear strength of adhesive Joint was higher than that of spot welded joint, but the tear strength of adhesive Joint was lower than that of spot welded joint.

  • PDF

Strength Evaluation of Adhesive Bonded Joint for Car Body (차체접합과 관련한 접합 강도 평가)

  • 이강용;김종성;공병석;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.143-150
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for electrical vehicle body has been performed through single lap joint tests with the design parameters such as joint style, adherend, bonding overlap length and bonding thickness. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the stress ratio zero value. It is experimentally observed that fatigue strength of joint increases for the increase of overlap length. The combinations of Al-Al and Al-FRP adherends show that fatigue strength of joint is hardly changed for the increase of bonding thickness, but FRP-FRP adherend specimen shows that fatigue strength of joint increases after decreases for the increase of bonding thickness. Al-Al adherend specimen has much higher fatigue length than Al-FRP and FRP-FRP adherend specimens. Riveting at adgesive bonded joint gives little effect on fatigue strength.

Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by T-Peel Joint Test (T형 이음 접합에 의한 경량구조물용 접착이음강도의 평가)

  • 이강용;공병석;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.56-65
    • /
    • 1998
  • The bonding strength evaluation of the light weight materials for an electrical vehicle has been performed through the T-peel joint test in which the design paramete- rs such as joint style, adherend type, adherend thickness, adhesive thickness, and adhesive type are considered. It is experimentally observed that the peel strength of joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the peel strength of joint increases a little. Aluminum-FRP adherend combination shows such higher peel strength than that of Aluminum-Aluminum adherend combination. For the adhesive bonded joint, the results of FEM analysis agree with those of experiment. The adhesive bonded joint reinfored with a rivet gives higher peel strength than that of the joint without rivet.

  • PDF

Research on Characteristics of Natural Joint with Low Roughness (낮은 거칠기를 갖는 자연절리면의 특성 연구)

  • 이수곤;양홍석;김부성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.745-750
    • /
    • 2000
  • The shear strength of rock discontinuities is very important in many rock engineering project including analysis of tunnel and slope. But shear strength of rock that acquired through discontinuity shear test is different from soil shear test and more complex. Shear strength is effected by the factors which are various, but it is the best influence of filling material and joint roughness. In this research, we studied shear strength characters of natural joint of phillite that was placed importance on joint roughness, JRC is less low than 8.

  • PDF

Investigation of shear strength models for exterior RC beam-column joint

  • Parate, Kanak;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.475-514
    • /
    • 2016
  • Various models have been proposed by several researchers for predicting the exterior RC beam-column joint shear strength. Most of these models were calibrated and verified with some limited experimental database. From the models it has been identified that the joint shear strength majorly depends on ten governing parameters. In the present paper, detailed investigation of twelve analytical models for predicting shear strength of exterior beam-column joint has been carried out. The study shows the effect of each governing parameter on joint shear strength predicted by various models. It has been observed that the consensus on effect of few of the governing parameters amongst the considered analytical models has not been attained. Moreover, the predicted joint strength by different models varies significantly. Further, the prediction of joint shear strength by these analytical models has also been compared with a set of 200 experimental results from the literature. It has been observed that none of the twelve models are capable of predicting joint shear strength with sufficient accuracy for the complete range of experimental results. The research community has to reconsider the effect of each parameters based on larger set of test results and new improved analytical models should be proposed.

Estimation of Bolted Joint Strength of Flat Plate of Glass-Mat Reinforced Thermoplastics (GMT 평판의 볼트조인트 강도 평가)

  • Kang, Wan-Seok;Min, Ji-Hyun;Lee, Jae-Wook;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1636-1643
    • /
    • 2003
  • In this study, bolted joint made of Glass-Mat Reinforced Thermoplastics (GMT) specimen was under tensile loading to investigate the relation between joint strength and glass-fiber weight fraction of the flat plate specimen. The effect of molding conditions such as the initial size of a GMT charge and molding temperatures was investigated under plane strain condition. In consideration of the specimen geometry, minimum end distance and width of the specimen to induce the bearing fracture mode of the bolted joint were determined. And finally, the effect of the outer diameter of washer and clamping pressure on joint strength was also investigated. Since joint strength is dependent on the local glass-fiber weight fraction, experimentally measured strength was modified, considering its irregular values of the specimen molded under various processing conditions in order to obtain a reasonable correlation between the two.

Strength Estimation of T-joint Area of Composite Housing of Medium Range Surveillance Radar (중거리급 탐색레이더 복합재 하우징의 T-joint 영역 구조 강도 평가)

  • Kwon, Min-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.149-158
    • /
    • 2008
  • This article provides strength estimation of T-joint area which made of composite material. Inner and outer structures of medium range surveillance radar are all made of sandwich structure which is made with composite material(CFRP) and aluminum honeycomb core. Since the radar is voluminous and has very complex inner structure, the whole structure cannot be made as one piece. Therefore, usage of T-joints is inevitable. Since some of stress concentration areas were located around T-joint area, series of strength estimations were conducted. Three different configurations were tested to improve mechanical properties(primarily on strength). The results show an improvement on strength to meet calculated strength on stress concentrated T-joint area.

Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by Single-Lab Joint Test (단면 겹치기 이음 시험에 의한 경량구조물용 접착 이음강도의 평가)

  • 이강용;김준범;최홍섭;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 1997
  • The bonding strength evaluation of light weight materials for electrical vehicle applications has been performed through single lap joint tests in which the design parameters such as fillet, joint style, adherend, bonding overlap length,bonding thickness, and environmental condition(soaking time in $25^{\circ}C$ water) are considered. It is experimentally oberved that lap shear strength of joint increases for higher fillet height, longer overlap length, and thinner bonding layer thickness. Al-Al adherend combination shows much higher lap shear strength than AL-FRP and FRP-FRP adherend combinations. Riveting at adhesive bonded joint of AL-AL adherend combination makes lap shear strength decrease. Effect of soaking time on lap shear strength is negligible.

  • PDF

Fatigue Strength Evaluation of T-Peel Adhesive Joing for Light Weight Material (경량 재료의 T형 접합이음의 피로강도 평가)

  • Lee, K.Y.;Kong, B.S.;Choi, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.166-173
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for an electrical vehicle body has been performed through T-peel joint tests with the design parameters such as joint style, adherend type, adherend thickness, adhesive thickness, and various adhesives. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the zero stress ratio. It was observed that the fatigue strength of the joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the fatigue strength of the joint increases insignificantly. An aluminum-FRP adherend combination shows much higher fatigue strength than an aluminum-aluminum adherend combination. The results of fatigue tests were found to be consistent with those of static tests.

  • PDF