• 제목/요약/키워드: Thermal Test

검색결과 4,242건 처리시간 0.029초

Thermal Fatigue Test of an Annular Structure

  • Hwang Jeong-Ki;Suh Chang-Min;Kim Chae-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.59-65
    • /
    • 2006
  • A half-scaled large test model for the main components of the real annular structure was built and the thermal behaviors were experimented and obtained by thermal cyclic loads. The model design and the test conditions for the thermal loads were determined to take into consideration the thermal and mechanical loads acting on the real annular structure by finite element analyses. Temperature profiles and strains of the main components of the model were measured at an early stage of the test and periodically throughout the test in the given test conditions. After completion of the thermal cyclic tests, no evidence of crack initiation and propagation were identified by a dye penetration test. The measured strains at the critical parts were slightly increased proportionally with the increase in the number of the thermal cycles.

정지궤도 위성의 열평형 시험 모델링 및 예비 예측 (THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE)

  • 전형열;김정훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

표면히터를 이용한 HAUSAT-2 위성 STM의 우주모사 및 열해석 검증 연구 (Space Simulation Test and Thermal Verification of HAUSAT-2 STM (Structural-Thermal Model) by Using Surface Heaters)

  • 이미현;김동운;황기룡;장영근
    • 한국항공우주학회지
    • /
    • 제33권11호
    • /
    • pp.106-114
    • /
    • 2005
  • 본 논문은 HAUSAT-2 위성의 구조-열모델(STM)에 대해 수행한 우주모사시험의 결과 및 이에 따른 열 모델링의 수정과 해석에 대한 연구 결과를 보여준다. 열 모델링의 보정은 시험 데이터와의 비교 분석 과정을 반복하여 이루어졌으며, 이러한 보정된 열 모델링을 통해 시험데이터와 근사한 결과를 재해석 시에 얻게 되었다. HAUSAT-2의 열진공 및 열평형 시험에서는 표면히터를 사용하여 태양광을 모사하였다. 본 열진공 및 열평형 시험을 통하여 소형 열진공 챔버 내에서 국내 최초로 초소형 위성 모델을 우주모사시험하기 위한 저비용이며 효율적인 열시험 방법을 제시하였고, 또한 이를 시험 결과를 통해 검증하였다.

인공위성 탑재품 수준 열진공 시험에 대한 열해석 모델의 개발과 환경시험 결과를 이용한 검증 (Development and Verification of Thermal Analysis Model for Thermal Vacuum Test of Satellite Components)

  • 김상호;서현석;유재호;한은수;김태경;김형동;허환일
    • 한국항공우주학회지
    • /
    • 제38권8호
    • /
    • pp.842-847
    • /
    • 2010
  • 본 연구는 인공위성 탑재품 열진공 시험시 적용된 열환경 조건, 탑재품 시험용 열진공 챔버의 형상, 위성체 내부의 열환경들을 고려하여 열진공 시험 과정을 모사하는 수치해석모델을 설계하여 열해석을 수행하였다. 피시험체인 탑재품과 열진공 챔버 구성요소의 시간에 따른 온도 변화를 보여주는 과도적(Transient) 해석 결과를 구할 수 있다. 열해석에 의한 성능향상 설계를 반영하여 업그레이드한 열진공 챔버를 이용한 탑재품 환경시험을 수행하였으며, 시험 결과와 열해석 결과에 대한 비교/검증을 수행하였다.

전기기기의 발열을 고려한 다단계 가속열노화 방법 (Multi-phase Accelerating Test Method of Thermal Aging Considering Heat Generation of Electric Equipment)

  • 임병주;박창대;정경열
    • 한국유체기계학회 논문집
    • /
    • 제16권5호
    • /
    • pp.18-23
    • /
    • 2013
  • Thermal aging test is performed to qualify the life time of equipment in thermally aged condition. Due to long life time more than 10 years like as in power plant, the equipment is subjected to the accelerated thermal aging condition which is able to shorten the long aging test period by increasing aging temperature. Normally, conservatism of thermal aging test causes to impose unbalanced and excessive thermal load on components of the equipment, and deformation and damage problems of the components. Additionally, temperature rise of each component through heat generation of the electric equipment leads to long-term problem of the test period. Multi-phase accelerating aging test is to perform thermal aging test in multiple aging conditions after dividing into groups with various components of equipment. The groups might be classified considering various factors such as activation energy, temperature rise, glass transition temperature and melting temperature. In this study, we verify that the multi-phase accelerating aging test method can reduce and equalize the thermal over load of the components and shorten aging test time.

Data Analysis of KOMPSAT Thermal Test in Simulated On-orbit Environment

  • Kim, Jeong-Soo;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권2호
    • /
    • pp.30-42
    • /
    • 2000
  • On-orbit thermal environment test of KOMPSAT was performed in early 1999. An analysis of the test data are addressed in this paper. For the thermal-environmental simulation of spacecraft bus, an artificial heating through the radiator zones and onto some critical heat-dissipating electronic boxes was made by Absorbed-heat Flux Method. Test data obtained in terms of temperature history were reduced into flight heater duty cycles and converted into the total electrical power required for spacecraft thermal control. Verification result of flight heaters dedicated to the bus thermal control is presented. Additionally, an exhaustive heating-control process for maintaining the spacecraft thermally safe and for realistic simulation of the orbital-thermal environment during the test are graphically shown. Qualitative suggestions to post-test model correlation are given in consequency of the analysis.

  • PDF

인공위성 개발을 위한 유닛 열시험 개요와 실제 (Overview of Thermal Test and Practice in Developing Satellite)

  • 서정기;장태성;차원호
    • 한국항공우주학회지
    • /
    • 제41권11호
    • /
    • pp.915-920
    • /
    • 2013
  • 인공위성 내부 유닛들이 위성에 실장 되기 위해서는 각 위성 프로그램에서 요구하는 다양한 환경시험을 반드시 통과해야 한다. 최근 타 분야의 기술이 우주분야로 이전되면서 다양한 인공위성 탑재체들이 개발되고 있다. 하지만, 타분야 개발자의 경우 우주개발에 대한 경험 및 이해부족으로 발사 및 우주환경시험을 수행함에 있어 다양한 문제점을 접하게 된다. 본 기술논문에 위성개발 각 단계에서 수행되는 열시험의 개념을 서술하여 우주분야 기술개발을 처음으로 수행하는 개발자가 열시험을 준비하는데 실제적인 도움을 주고자 한다.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

용사법에 의한 질코니아 세라믹코팅에 대한 연구 (Plasma spray coating of zirconia ceramic)

  • 이형근;김대훈;황선효;전계남;서동수
    • Journal of Welding and Joining
    • /
    • 제7권2호
    • /
    • pp.25-34
    • /
    • 1989
  • The purpose of this work is to coat ZrO$_{2}$ - 8Y$_{2}$O$_{3}$ ceramic on the Al cast alloy(AC-8A) by using the plasma spray method. Two types of coatings which were composed of two and three layer coating were examined. Each coating powder was analyzed for shape and size distribution and X-ray diffraction pattern. For the coated layers, microstructural analysis and performance estimation which was composed of static thermal test, thermal cyclic test and thermal shock test were conducted.

  • PDF

INTEGRAL BEHAVIOR OF THE ATLAS FACILITY FOR A 3-INCH SMALL BREAK LOSS OF COOLANT ACCIDENT

  • Choi, Ki-Yong;Park, Hyun-Sik;Cho, Seok;Euh, Dong-Jin;Kim, Yeon-Sik;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.199-212
    • /
    • 2008
  • A small-break loss of coolant accident (SB-LOCA) test with a break size equivalent to a 3-inch cold leg break of the APR1400 was carried out as the first transient integral effect test using the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation). This was the first integral effect test to investigate the integral performance of the test facility and to verify its simulation capability for one of the design-basis accidents. Reasonably good thermal hydraulic data was obtained so that an integral performance of the fluid sub-systems was identified and control performance of the ATLAS was confirmed under real thermal hydraulic conditions. Based on the measured data, a post-test calculation was carried out using the best-estimate thermal hydraulic safety analysis code, MARS 3.1, and the similarity between the expected and actual data was investigated. On the whole, the post-test calculation reasonably predicts the major thermal hydraulic parameters measured during the SB-LOCA test. The obtained data will be used to enhance the simulation capability of the ATLAS and to improve an input model of the ATLAS for simulation of other target scenarios.