• 제목/요약/키워드: Thermal analysis

검색결과 10,397건 처리시간 0.043초

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

HAUSAT-2의 궤도 열해석과 열제어계의 예비설계 (THE ORBITAL THERMAL ANALYSIS OF HAUSAT-2 AND ITS THERMAL CONTROL SUBSYSTEM PRELIMINARY DESIGN)

  • 이미현;김동운;장영근
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2005년도 한국우주과학회보 제14권1호
    • /
    • pp.129-132
    • /
    • 2005
  • 본 논문에서는 HAUSAT-2의 궤도 열 해석과 열 제어계의 예비설계를 살펴본다. HAUSAT-2의 열 제어계를 설계하기 위해서 우선 열 제어의 기본 이론 및 열 평형 방정식을 바탕으로 능동 및 수동의 각종 열 제어 방법을 고려하여 HAUSAT-2에 적합한 열 제어 방법 및 재질을 선정하였다(Karam 1998). 또한, 예상궤도인 고도 650km, 경사각 $98^{\circ}$의 태양동기궤도에서 HAUSAT-2가 처해지는 열 환경에 대한 분석 및 위성체의 각 면에 가해지는 은도 분포 및 범위를 예측하여 이를 바탕으로 열 제어계를 설계하였다. 열 해석은 기본적으로 시스템레벨의 해석, 부품레벨의 해석, 보드레벨의 해석 차순으로 진행되었으며, 현재 HAUSAT-2의 열 해석은 발열이 비교적 많은 보드의 해석까지 진행된 상태이며, 이러한 열 해석을 통해서 얻은 결과는 요구조건을 만족하지 못하는 부분에 대해 설계 변경 등을 통해서 모든 부품이 허용온도 범위를 유지하도록 HAUSAT-2의 열 제어계를 설계하였다. 향후 구조-열 모델(STM; Structure & Thermal Model)을 제작한 후 열 진공시험을 통해 열 해석 결과에 대한 검증을 수행할 것이다.

  • PDF

열해석 모델 간략화 및 동적특성에 관한 연구 (A STUDY ON THERMAL MODEL REDUCTION AND DYNAMIC RESPONSE)

  • 전형열;김정훈
    • 한국전산유체공학회지
    • /
    • 제19권4호
    • /
    • pp.37-44
    • /
    • 2014
  • A detailed satellite panel thermal model composed of more than thousands nodes can not be directly integrated into a spacecraft thermal model due to its node size and the limitation of commercial satellite thermal analysis programs. For the integration of the panel into the satellite thermal model, a reduced thermal model having proper accuracy is required. A thermal model reduction method was developed and validated by using a geostationary satellite panel. The temperature differences of main components between the detailed and the reduced thermal model were less than $1^{\circ}C$ in steady state analysis. Also, the dynamic responses of the detailed and the reduced thermal model show very similar trends. Thus, the developed reduction method can be applicable to actual satellite thermal design and analysis with resonable accuracy and convenience.

전자장비 회로기판의 열응력해석 (Thermal Stress Analysis for the Printed Circuit Board of Electronic Packages)

  • 권영주;김진안
    • 한국CDE학회논문집
    • /
    • 제9권4호
    • /
    • pp.416-424
    • /
    • 2004
  • In this paper, the heat transfer analysis and thermal stress analysis of the PCB(Printed Circuit Board) equipped in electronic Packages are carried out for various may types of chips on the PCB. And two structural PCB models are used in the analyses. The electronic chips on the PCB usually emit heat and this heat generates the thermal stress around the chip. The thermal load due to the heat generation of chips on the PCB may cause the malfunction of the electronic packages such as a monitor. a computer etc. Hence, the PCB should be designed to withstand these thermal loads. In this paper, the heat transfer analysis and thermal stress analysis are executed for the PCB model with pins and the analysis results are compared with the results for the PCB model without pins. The analysis results show that the PCB model without pins is not good for the thermal stress analysis of PCB, even though these two models have similar heat transfer characteristics. The analysis results also show that the highest thermal stress occurs in the pin especially attached to the highest temperature chip, and the PCB constrained to the electronic package on the long side is structurally more stable than other cases. The analyses of the PCB are executed using the finite element analysis code, NISA.

복합재 통신위성 안테나의 우주환경 열해석 (Thermal Analysis of Composite Satellite Antenna Structure in Space Environment)

  • 김경남;김창호;정기모;한재흥
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.77-80
    • /
    • 2002
  • Thermal analysis has been performed to evaluate the thermal effect on composite antenna (Ka-band) structure in space environment. The concepts of thermal control are also presented to maintain the antenna components within respective temperature limits. A steady-state algorithm of I-DEAS' thermal analysis software was utilized to predict both maximum and minimum temperature, maximum gradient temperature, and temperature distribution on each antenna component.

  • PDF

Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles

  • Park, Chan-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.882-887
    • /
    • 2014
  • In this paper, the water cooling method among the forced coolant cooling methods is considered to be applied to the 110kW-class IPMSM for railway vehicles. First, basic thermal property analysis of the IPMSM is conducted using the three-dimensional thermal equivalent network method. Then, based on the results of the basic thermal property analysis, some design requirements for the water cooling jacket are deduced and a basic design of the water cooling jacket is carried out. Finally, thermal equivalent circuit of the water cooling jacket is attached to the IPMSM's 3D thermal equivalent network and then, the basic thermal and effectiveness analysis are conducted for the case of applying the water cooling jacket to the IPMSM. In the future, the thermal variation trends inside the IPMSM by the application of the water cooling jacket is expected to be quickly and easily predicted even at the design step of the railway traction motor.

가스 터빈 Hot gas casing에 대한 유동 및 열응력 해석 (A study on the flow and thermal analysis of the hot gas casing of gas turbine)

  • 최영진;이영신;김재훈;박원식;김현수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.557-561
    • /
    • 2004
  • The hot gas casing of gas turbine has operated high temperature and thermal gradient. The structure safety of hot gas casing will be highly depend on the thermal stress. In this paper, flow and thermal stress analysis of hot gas casing is carried out using ANSYS program. The obtained temperature data by flow analysis of hot gas casing apply the load condition of the thermal analysis. The thermal stress analysis is carry out the elastic-plasticity analysis. The pressure, temperature and velocity of the flow and thermal stress of the hot gas casing are presented.

  • PDF

마찰면의 압력 분포를 고려한 제동디스크의 열응력 해석 (Thermal Stress Analysis for a Brake Disk considering Pressure Distribution at a Frictional Surface)

  • 이영민;박재실;석창성;이찬우;김재훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.842-846
    • /
    • 2005
  • A brake disk and a pad are important parts that affect the braking stability of a railway vehicle. Especially, because a brake disk stops the vehicle using conversion of the kinetic energy to frictional energy, thermal fatigue cracks are generated by the cyclic thermal load, as frictional heat, on a frictional surface and these cracks cause the fracture of a brake disk. Therefore, many researches for the thermal stress must be performed to improve the efficiency of brake disk and ensure the braking stability. In this study, we performed the thermal stress analysis for a ventilated brake disk with 3-D analysis model. For that, we simplified the shape of a ventilated hole to minimize problems that could be occurred in analysis process. Thermal stress analysis was performed in case that pressure distributions on a frictional surface is constant and is not. To determine pressure distributions of irregular case, pressure distribution analysis for a frictional surface was carried out. Finally using the results that were obtained through pressure distribution analysis, we carried out thermal stress analysis of each case and investigated the results of thermal stress analysis.

  • PDF

인공위성 탑재품 수준 열진공 시험에 대한 열해석 모델의 개발과 환경시험 결과를 이용한 검증 (Development and Verification of Thermal Analysis Model for Thermal Vacuum Test of Satellite Components)

  • 김상호;서현석;유재호;한은수;김태경;김형동;허환일
    • 한국항공우주학회지
    • /
    • 제38권8호
    • /
    • pp.842-847
    • /
    • 2010
  • 본 연구는 인공위성 탑재품 열진공 시험시 적용된 열환경 조건, 탑재품 시험용 열진공 챔버의 형상, 위성체 내부의 열환경들을 고려하여 열진공 시험 과정을 모사하는 수치해석모델을 설계하여 열해석을 수행하였다. 피시험체인 탑재품과 열진공 챔버 구성요소의 시간에 따른 온도 변화를 보여주는 과도적(Transient) 해석 결과를 구할 수 있다. 열해석에 의한 성능향상 설계를 반영하여 업그레이드한 열진공 챔버를 이용한 탑재품 환경시험을 수행하였으며, 시험 결과와 열해석 결과에 대한 비교/검증을 수행하였다.

정지궤도위성의 해양관측센서 임무 궤도 열해석 (ON-ORBIT THERMAL ANALYSIS FOR THE GEOSTATIONARY OCEAN COLOR IMAGER OF A GEOSTATIONARY SATELLITE)

  • 김정훈;전형열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.135-141
    • /
    • 2009
  • A preliminary thermal analysis is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative and conductive thermal models are employed in order to predict thermal responses of the GOCI on the geostationary orbit. According to the results of this analysis are as follows: 1) the GOCI instrument thermal control is satisfactory to provide the temperatures for the GOCI performances, 2) the thermal control is defined and interfaces are validated, and 3) the entrance baffle temperature is found slightly out its specification, therefore further detailed analyses should be continued on this element.

  • PDF