• Title/Summary/Keyword: Thermal formation

Search Result 1,846, Processing Time 0.028 seconds

SnO2 Nanowire Networks on a Spherical Sn Surface: Synthesis and NO2 sensing properties (구형 Sn 표면의 SnO2 나노와이어 네트워크: 합성과 NO2 감지 특성)

  • Pham, Tien Hung;Jo, Hyunil;Vu, Xuan Hien;Lee, Sang-Wook;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.142.2-142.2
    • /
    • 2018
  • One-dimensional metal oxide nanostructures have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. In which, semiconducting $SnO_2$ material with wide-bandgap Eg = 3.6 eV at room temperature, is one of the attractive candidates for optoelectronic devices operating at room temperature [1, 2], gas sensor [3, 4], and transparent conducting electrodes [5]. The synthesis and gas sensing properties of semiconducting $SnO_2$ nanomaterials have become one of important research issues since the first synthesis of SnO2 nanowires. In this study, $SnO_2$ nanowire networks were synthesized on a basis of a two-step process. In step 1, Sn spheres (30-800 nm in diameter) embedded in $SiO_2$ on a Si substrate was synthesized by a chemical vapor deposition method at $700^{\circ}C$. In step 2, using the source of these Sn spheres, $SnO_2$ nanowire (20-40 nm in diameter; $1-10{\mu}m$ in length) networks on a spherical Sn surface were synthesized by a thermal oxidation method at $800^{\circ}C$. The Au layers were pre-deposited on the surface of Sn spherical and subsequently oxidized Sn surface of Sn spherical formed SnO2 nanowires networks. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that $SnO_2$ nanowires are single crystalline. In addition, the $SnO_2$ nanowire is also a tetragonal rutile, with the preferred growth directions along [100] and a lattice spacing of 0.237 nm. Subsequently, the $NO_2$ sensing properties of the $SnO_2$ network nanowires sensor at an operating temperature of $50-250^{\circ}C$ were examined, and showed a reversible response to $NO_2$ at various $NO_2$ concentrations. Finally, details of the growth mechanism and formation of Sn spheres and $SnO_2$ nanowire networks are also discussed.

  • PDF

Processing Suitability of Canned Ark Shell (새고막의 통조림 가공 적성)

  • 배태진
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.237-242
    • /
    • 1998
  • This study was carried out to process canned ark shell with highly quality by management of proper processing conditions for prevention of oxidation and discoloration by heating. Ark shell has hemoglobin as blood pigment in red blood shell which same as other cockles. Hemoglobin is easy to come oxidation and browning reaction, and it has large contents of carotenoid as meat pigment. Proximate compositions in ark shell were 76.9% of moisture, 18.1% of crude protein, 1.8% of crude lipid, 1.3% of carbohydrate and 1.6% of crude ash. And contents of carotenoid and hemoglobin were 0.67~1.02mg% and 0.98~1.64g/dl, respectively. When the living ark shell was soaked in 2% NaCl solutions, about 89% of mud was removed after 10 hours soaking, and over 91% was removed when the pH was adjusted to 7.5. Carotenoid pigment were prepared that extracted from ark shell by using acetone. And determined visible spectrum were two peak at 452nm and 687nm, and λmax were 452nm. During thermal treatment at 95$^{\circ}C$, 111$^{\circ}C$, 116$^{\circ}C$ and 121$^{\circ}C$ for 60 minutes, retention ratio of carotenoid were 71.8%, 66.8%, 64.4% and 36.5%, and after 120 minutes retention ratio were 56.6%, 30.6%, 30.3% and 17.2%, respectively. When heated at 95$^{\circ}C$, 111$^{\circ}C$, 116$^{\circ}C$ and 121$^{\circ}C$, formation of browning material were increased at high temperature and long time treatment.

  • PDF

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향(Part I: FDS의 성능평가))

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon-Hyun;Lock, Andrew
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Experimental and numerical studies were conducted to investigate the thermal and chemical characteristics of heptane fires in a full-scale ISO 9705 room. Representative fire conditions were considered for over-ventilated fire (OVF) and under-ventilated fire (UVF). Fuel flow rate and doorway width were changed to create OVF and UVF conditions. Detailed comparisons of temperature and species concentrations between experimental and numerical data were presented in order to validate the predictive performance of FDS (Fire Dynamic Simulator). The OVF and UVF were explicitly characterized with distributions of temperature and product formation measured in the upper layer, as well as combustion efficiency and global equivalence ratio. It was shown that the numerical results provided a quantitatively realistic prediction of the experimental results observed in the OVF conditions. For the UVF, the numerically predicted temperature showed reasonable agreement with the measured temperature. The predicted steady-state volume fractions of $O_2$, $CO_2$, CO and THC also agreed quantitatively with the experimental data. Although there were some limitations to predict accurately the transient behavior in terms of CO production/consumption in the UVF condition, it was concluded that the current FDS was very useful tool to predict the fire characteristics inside the compartment for the OVF and UVF.

Effect of Sodium Stearoyl Lactylate on Complex Formation with Amylopectin and on Gelatinization and Retrogradation of Wheat Starch (Sodium Stearoyl Lactylate가 아밀로펙틴과의 결합물 형성 및 밀전분의 호화와 노화에 미치는 영향)

  • Jang, Jae-Kweon;Lee, Yun-Hyung;Lee, Seok-Hoon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.500-506
    • /
    • 2000
  • The effects of sodium stearoyl lactylate(SSL) on the thermal properties of wheat starch and amylopectin, and the crystallinity properties of amylopectin were investigated using differential scanning calorimetry(DSC) and X-ray diffractometer. On the rescan(second heating), amylopectin produced the featureless thermogram shown at the second heating, and SSL alone melted at $40{\sim}55^{\circ}C$, while the mixture of amylopectin containing 8% water and SSL(10:1), presenting the evidence of AP-SSL complex, showed differentiate melting temperature(other crystallinity) from SSL alone. Also, the melting enthalpy of AP and SSL mixture by subsequent heating and cooling were continuously increased. Further, the mixtures of wheat starch: SSL (5:1, w/w) and amylopectin: SSL(5:1, w/w), indicated AP-SSL complex, showed the reversible melting peak at temperature range of $60{\sim}70^{\circ}C$ together with melting peak of SSL observed at temperature range of $40{\sim}55^{\circ}C$. AP-SSL complex in the X-ray diffraction, compared V-form of amylose-lipid complex, exhibited characteristic peaks($2{\theta}$, 5.57, 20.903, 23.227). The gelatinization enthalpy value of wheat starch in the presence of SSL, observed at temperature range of $50{\sim}70^{\circ}C$, was decreased at total water content 60%, whearas had no significant effect at total water content 40, 50%, and also, SSL increased melting enthalpy of amylose-lipid complex. The extent of AP and wheat starch retrogradation wasreduced significantly by SSL.

  • PDF

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

Magnetic Domain Structures with Substrate Temperatures in Co-22%Cr Alloy Thin Films (자가정렬형 나노구조 Co-22%Cr합금 박막의 기판온도에 따른 미세 도메인 구호)

  • 송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.184-188
    • /
    • 2001
  • Using a DC-sputter and changing the substrate temperature to room temperature and 200$\^{C}$, we manufactured each Co-22%Cr alloy thin-films, which has a uniform micro-structure at room temperature, and a fine self-organized nato structure (SONS) at the inside of the grain at the elevated temperature. We also investigated the microstructure and domain structure using a transmission electron microscope (TEM) and a magnetic force microscope (MFM). We managed to corrode selectively Co-enriched phase, then investigate the microstructure using a TEM. We found that it has a uniform composition when it is manufactured at room temperature, but, we found that it has a unique microstructure, which has a plate-like fine Co-enriched phase, with the formation of SONS at the inside of the grain at the elevated temperature. In MFM characterization, we found maze-type domains at the period of 5000 when the substrate temperature maintains at room temperature. We define that the maze-type domain has a disadvantage at the high density recording because it generates noises easily as the exchange coupling energy between the grains is big. On the other hand, there is only a fine domain structure at the period of 500 when the substrate temperature maintains at 200 $\^{C}$. We define that the fine domain structure has an advantage at the high density magnetic recording because it has thermal stability due to small exchange coupling energy.

  • PDF

Tumor Necrosis Factor-alpha and Apoptosis Following Spinal Nerve Ligation Injury in Rats

  • Kim, Sung-Hoon;Nam, Jae-Sik;Choi, Dae-Kee;Koh, Won-Wook;Suh, Jeong-Hun;Song, Jun-Gol;Shin, Jin-Woo;Leem, Jeong-Gil
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.185-190
    • /
    • 2011
  • Background: Spinal nerve ligation (SNL) injury in rats produces a pain syndrome that includes mechanical and thermal allodynia. Previous studies have indicated that proinflammatory cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) play an important role in peripheral mediation of neuropathic pain, and that altered dorsal root ganglion (DRG) function and degree of DRG neuronal apoptosis are associated with spinal nerve injury. The present study was conducted to evaluate the expression of TNF-${\alpha}$ and the extent of apoptosis in the dorsal root ganglion after SNL in rats. Methods: Sprague-Dawley rats were subjected to SNL of the left L5 and L6 spinal nerves distal to the DRG and proximal to the formation of the sciatic nerve. At postoperative day 8, TNF-${\alpha}$ protein levels in the L5.6 DRG were compared between SNL and naive groups using ELISA. In addition, we compared the percentage of neurons injured in the DRG using immunostaining for apoptosis and localization of activated caspase-3. Results: SNL injury produced significant mechanical and cold allodynia throughout the 7-day experimental period. TNF-${\alpha}$ protein levels were increased in the DRG in rats that had undergone SNL ($12.7{\pm}3.2$ pg/100 ${\mu}g$, P < 0.001) when compared with naive rats ($4.1{\pm}1.4$ pg/100 ${\mu}g$). The percentage of neurons or satellite cells co-localized with activated caspase-3 were also significantly higher in rats with SNL than in naive rats (P < 0.001, P < 0.05, respectively). Conclusions: SNL injury produces mechanical and cold allodynia, as well as TNF-${\alpha}$ elevation and apoptosis in the DRG.

Interfacial Reaction between 42Sn-58 Bi Solder and Electroless Ni-P/Immersion Au UBM during Aging (시효 처리에 의한 42Sn-58Bi 솔더와 무전해 Ni-P/치환 Au UBM 간의 계면 반응)

  • Cho Moon Gi;Lee Hyuck Mo;Booh Seong Woon;Kim Tae-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.95-103
    • /
    • 2005
  • The interfacial reaction between 42Sn-58Bi solder (in wt.$\%$ unless specified otherwise) and electroless Ni-P/immersion Au has been investigated before and after thermal aging, with a focus on formation and growth of an intermetallic compound (IMC) layer, consumption of under bump metallurgy (UBM), and bump shear strength. The immersion Au layer with thicknesses of 0 (bare Ni), 0.1, and $1{\mu}m$ was plated on the $5{\mu}m$ thick electroless Ni-P ($14{\~}15 at.\%$P) layer. Then, the 42Sn-58Bi solder balls were fabricated on three different UBM structures by screen-printing and pre-reflow. The $Ni_3Sn_4$ layer (IMC1) was formed at the joint interface after pre-reflow for all the three UBM structures. On aging at $125^{\circ}C$, a quaternary phase (IMC2) was observed above the $Ni_3Sn_4$ layer in the Au-containing UBM structures, which was identified as $Sn_{77}Ni{15}Bi_6Au_2$ (in at.$\%$). The thick $Sn_{77}Ni{15}Bi_6Au_2$ layer deteriorated the integrity of the solder joint and the shear strength of the solder bump was decreased by about $40\%$ compared with non-aged joints.

  • PDF

Interfacial Adhesion Energy of Ni-P Electroless-plating Contact for Buried Contact Silicon Solar Cell using 4-point Bending Test System (4점굽힘시험법을 이용한 함몰전극형 Si 태양전지의 무전해 Ni-P 전극 계면 접착력 평가)

  • Kim, Jeong-Kyu;Lee, Eun-Kyung;Kim, Mi-Sung;Lim, Jae-Hong;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to develop electroless-plated Nickel Phosphate (Ni-P) as a contact material for high efficient low-cost silicon solar cells, we evaluated the effect of ambient thermal annealing on the degradation behavior of interfacial adhesion energy between electroless-plated Ni-P and silicon solar cell wafers by applying 4-point bending test method. Measured interfacial adhesion energies decreased from 14.83 to 10.83 J/$m^2$ after annealing at 300 and $600^{\circ}C$, respectively. The X-ray photoelectron spectroscopy analysis suggested that the bonding interface was degraded by environmental residual oxygen, in which the oxidation inhibit the stable formation of Ni silicide phase between electroless-plated Ni-P and silicon interface.