• 제목/요약/키워드: Thermal properties

검색결과 8,092건 처리시간 0.043초

가교 시스템이 다른 NR 가황물의 열노화 특성 (Thermal Aging Properties of NR Vulcanizates with Different Cure Systems)

  • 최성신;박병호
    • Elastomers and Composites
    • /
    • 제40권3호
    • /
    • pp.181-187
    • /
    • 2005
  • 가교 시스템이 다른 NR 가황물의 열노화에 의한 물성 변화를 연구하였다. 두 가지 황가교 시스템과 한 가지 레졸 가교 시스템을 도입하였으며, 가교제 함량을 변화시켰다. 황 가교시스템으로 만든 NR 가황물의 경우, $90^{\circ}C$에서 3일간 노화 후 경도와 모듈러스는 증가한 반면 신율과 인장강도는 감소하였다. 레졸 가교 시스템으로 만든 NR 가황물의 경우에는 노화 후 전반적으로 물성이 하락하였다. 열노화에 의한 물성 변화를 가교밀도의 변화로 설명하였다. 노화 후, 황 가교 시스템으로 만든 NR 가황물의 가교밀도는 증가한 반면, 레졸 가교 시스템으로 만든 NR 가황물의 가교밀도는 감소하였다. 노화방지제의 이동이 물성에 미치는 영향에 대해서도 조사하였다. 그러나 노화방지제의 이동으로는 노화에 의한 물성의 변화를 충분히 설명할 수 없었다.

삼각사와 원형사로 제직된 직물의 태, 열적성질 및 광학적 성질의 비교 (Comparison of hand, thermal and optical properties of woven fabrics made of triangular and circular shaped filaments)

  • 심현주;홍경아
    • 감성과학
    • /
    • 제5권3호
    • /
    • pp.47-52
    • /
    • 2002
  • 직물의 태는 손으로 만져 보았을 때 느껴지는 감촉, 육안으로 느껴지는 감각, 그리고 직물의 물리적 역학적 성질 등이 함께 어울어져 이루어지는 것이다. 따라서 본 연구에서는 폴리에스테르 원형사와 삼각사로 제직된 직물의 태와 온/냉감 및 광택도를 측정하였다. 삼각단면사로 제직된 직물이 원형단면사로 제직된 직물보다 더 좋은 태를 보였으며 열전달계수가 크게 나타나 냉감을 느낄 수 있었으며 높은 반사율을 보였다.

  • PDF

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Kim, Seong Hwang;Heo, Young-Jung;Park, Soo-Jin
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.517-527
    • /
    • 2019
  • To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding

  • Raj, Amritha;Sathyan, Dhanya;Mini, K.M.
    • Advances in concrete construction
    • /
    • 제11권2호
    • /
    • pp.151-161
    • /
    • 2021
  • The major shortcoming of concrete in most of the applications is its high self-weight and thermal conductivity. The emerging trend to overcome these shortcomings is the use of foam-concrete, which is a lightweight concrete consisting of cement, filler, water and a foaming agent. This study aims at the development of a cost-effective high-volume fly-ash foam-concrete insulation wall cladding for existing buildings using natural fiber like rice straw in different proportions. The paper reports the results of systematic studies on various mechanical, acoustic, thermal and durability properties of foam-concrete with and without replacement of cement by fly-ash. Fly-ash replaces 60 percent by weight of cement in foam-concrete. The water-solid ratio of 0.3, the filler ratio of 1:1 by weight, and the density of 1100 kg/㎥ (approx.) are fixed for all the mixes. Rice straw at 1%, 3% and 5% by weight of cement was added to improve the thermal and acoustic efficiency. From the investigations, it was inferred that the strength properties were increased with fly-ash replacement up to 1% rice straw addition. In furtherance, addition of rice straw and fly-ash resulted in improved acoustic and thermal properties.

Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan;Lee, Hyun-Seok;Han, Seong-Ok;Drzal, Lawrence T.
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.315-334
    • /
    • 2007
  • In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

음장제어용 막재료의 음향 및 단열특성 (Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control)

  • 정정호;김정욱;정재군;조병욱
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

잠재성 양이온 경화제로서 methylanilinium 염에 의해 개시된 에폭시 수지의 경화 동력학 및 열적 특성 (Cure Kinetics and Thermal Properties of Epoxy Resin Initiated by Methylanilinium Salts as a Latent Cationic Curing Agent)

  • 김택진;박수진;이재락
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.34-37
    • /
    • 2000
  • The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluroantimonate (CMH) curing agent on cure behavior and thermal properties of DGEBA epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic in a given temperature and reveals complex cure behavior as indicated by multiple exotherms. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator due to high activity of CMH. Viscoelastic properties during gel formation of DGEBA with CMH were investigated by rheological techniques under isothermal condition. The gel time obtained from the modulus crossover. point t(G')=G", was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization. The thermal stabilities were discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

  • PDF

열압착 온도가 전기방사 Polyacrylonitrile 분리막의 기계적 강도 및 물성치에 미치는 영향 (Effect of Thermal Pressing Temperature on the Mechanical and Material Properties of Electro-spun Polyacrylonitrile Nano-fibrous Separator)

  • 김민철;고태조;와카스 울 아리핀;동정
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.109-116
    • /
    • 2019
  • The mechanical deformation of a battery separator causes internal short-circuiting of the cathode - anode, which directly affects the explosion/ignition of batteries. To increase the mechanical properties of the separator fabricated by electro-spinning, use of a thermal pressing method is inevitable. Therefore, this research aims to maximize the mechanical strength of a porous separator by finding the proper thermal press temperatures given to Electro-spun Polyacrylonitrile (PAN) nanofibers. The different thermal press temperatures $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, and $100^{\circ}C$ were applied to the electro-spun fiber at 30 MPa pressure for one hour. The higher the temperature, the higher the resultant tensile strength; however, a higher temperature also lowered the strain and porosity. Thus, the membrane thermal pressed at $50^{\circ}C$ showed the best mechanical properties and the second highest porosity. Using the data, $50^{\circ}C$ was judged as the best thermal pressing temperature in terms of performance.

Optimum LWA content in concrete based on k-value and physical-mechanical properties

  • Muda, Zakaria Che;Shafigh, Payam;Yousuf, Sumra;Mahyuddin, Norhayati Binti;Asadi, Iman
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.215-225
    • /
    • 2022
  • Thermal comfort and energy conservation are critical issues in the building sector. Energy consumption in the building sector should be reduced whilst enhancing the thermal comfort of occupants. Concrete is the most widely used construction material in buildings. Its thermal conductivity (k-value) has a direct effect on thermal comfort perception. This study aims to find the optimum value of replacing the normal aggregate with lightweight expanded clay aggregate (LECA) under high strengths and low thermal conductivity, density and water absorption. The k-value of the LECA concrete and its physical and mechanical properties have varying correlations. Results indicate that the oven-dry density, compressive strength, splitting tensile strength and k-value of concrete decrease when normal coarse aggregates are replaced with LECA. However, water absorption (initial and final) increases. Thermal conductivity and the physical and mechanical properties have a strong correlation. The statistical optimisation of the experimental data shows that the 39% replacement of normal coarse aggregate by LECA is the optimum value for maximising the compressive and splitting tensile strengths whilst maintaining the k-value, density and water absorption at a minimum.