• Title/Summary/Keyword: Thermococcus sp.

Search Result 8, Processing Time 0.021 seconds

초호열성 고세균 Thermococcus sp. DT1331의 유황 화합물 이화 특성

  • 곽이성;김영배
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.354-358
    • /
    • 1997
  • Some sulfur coompounds dissimilation characteristcs of Thermococcus sp. DT1331 were studied. DT1331 had ether-like lipid compounds in addition to esters in the cell membrane. The specific growth rates of DT1331 decreased with increasing head spaces of the cultures. However, when the ratio of head space volume to medium volume was 5.60, the strain showed no growth. DT1331 showed vigo- rous growth with 1% or more elemental sulfur addition. Cystine could substitute elemental sulfur and DT1331 showed moderate growth with 0.1% or more cystine concentration. The specific growth rate and maximum cell concentration of Thermococcus sp. DT1331 in the presence of elemental sulfur were 0.80 hr$^{-1}$ and 2.0 x 10$^{8}$ cells/ml, respectively, while they were 0.67 hr$^{-1}$ and 1.1 x 10$^{8}$ cells/ml, respectively in the presence of cystine.

  • PDF

Thermococcus onnurineus sp. nov., a Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent Area at the PACMANUS Field

  • Bae, Seung-Seob;Kim, Yun-Jae;Yang, Sung-Hyun;Lim, Jae-Kyu;Jeon, Jeong-Ho;Lee, Hyn-Sook;Kang, Sung-Gyun;Kim, Sang-Jin;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1826-1831
    • /
    • 2006
  • A novel hyperthermophilic, anaerobic, heterotrophic archaeon, designated strain $NA1^T$, was isolated from a deep-sea hydrothermal vent area (depth, 1,650 m) within the Papua New Guinea-Australia-Canada-Manus (PACMANUS) field. Cells of this strain were motile by means of polar flagella, coccoid-shaped with a diameter of approximately $0.5-1.0{\mu}m$, and occurred as single cells. Optimal temperature, pH, and NaCl concentration for growth were $80^{\circ}C$, 8.5, and 3.5%, respectively. The new isolate was an obligate heterotroph that utilized yeast extract, beef extract, tryptone, peptone, casein, and starch as carbon and energy sources. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The G+C content of the genomic DNA was 52.0 mol%. Phylogenetic analysis of the 16S rRNA gene indicated that strain $NA1^T$ belongs to the genus Thermococcus, and the organism is most closely related to T. gorgonarius, T. peptonophilus, and T. celer; however, no significant homology was observed among species by DNA-DNA hybridization. Strain $NA1^T$ therefore represents a novel species for which the name Thermococcus onnurineus sp. novo is proposed. The type strain is $NA1^T$ (=KCTC 10859, =JCM 13517).

Backbone 1H, 15N, and 13C Resonance Assignments and Secondary Structure of a Novel Protein OGL-20PT-358 from Hyperthermophile Thermococcus thioreducens sp. nov.

  • Wilson, Randall C.;Hughes, Ronny C.;Curto, Ernest V.;Ng, Joseph D.;Twigg, Pamela D.
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.437-440
    • /
    • 2007
  • $OGL-20P^T$-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain $OGL-20P^T$, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of $OGL-20P^T$-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily ${\alpha}$-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein.

Molecular Cloning and Enzymatic Characterization of Cyclomaltodextrinase from Hyperthermophilic Archaeon Thermococcus sp. CL1

  • Lee, Jae-Eun;Kim, In-Hwan;Jung, Jong-Hyun;Seo, Dong-Ho;Kang, Sung-Gyun;Holden, James F.;Cha, Jaeho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1060-1069
    • /
    • 2013
  • Genome organization near cyclomaltodextrinases (CDases) was analyzed and compared for four different hyperthermophilic archaea: Thermococcus, Pyrococcus, Staphylothermus, and Thermofilum. A gene (CL1_0884) encoding a putative CDase from Thermococcus sp. CL1 (tccd) was cloned and expressed in Escherichia coli. TcCD was confirmed to be highly thermostable, with optimal activity at $85^{\circ}C$. The melting temperature of TcCD was determined to be $93^{\circ}C$ by both differential scanning calorimetry and differential scanning fluorimetry. A size-exclusion chromatography experiment showed that TcCD exists as a monomer. TcCD preferentially hydrolyzed ${\alpha}$-cyclodextrin (${\alpha}$-CD), and at the initial stage catalyzed a ring-opening reaction by cleaving one ${\alpha}$-1,4-glycosidic linkage of the CD ring to produce the corresponding single maltooligosaccharide. Furthermore, TcCD could hydrolyze branched CDs (G1-${\alpha}$-CD, G1-${\beta}$-CD, and G2-${\beta}$-CD) to yield significant amounts (45%, 40%, and 46%) of isomaltooligosaccharides (panose and $6^2$-${\alpha}$-maltosylmaltose) in addition to glucose and maltose. This enzyme is one of the most thermostable maltogenic amylases reported, and might be of potential value in the production of isomaltooligosaccharides in the food industry.

Cloning, Purification, and Characterization of a New DNA Polymerase from a Hyperthermophilic Archaeon, Thermococcus sp. NA1

  • Kim, Yun-Jae;Lee, Hyun-Sook;Bae, Seung-Seob;Jeon, Jeong-Ho;Lim, Jae-Kyu;Cho, Yon-A;Nam, Ki-Hoon;Kang, Sung-Gyun;Kim, Sang-Jin;Kwon, Suk-Tae;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1090-1097
    • /
    • 2007
  • Genomic analysis of Thermococcus sp. NA1 revealed the presence of a 3,927-base-pair (bp) family B-type DNA polymerase gene, TNA1_pol. TNA1_pol, without its intein, was overexpressed in Escherichia coli, purified using metal affinity chromatography, and characterized. TNA1_pol activity was optimal at pH 7.5 and $75^{\circ}C$. TNA1_pol was highly thermostable, with a half-life of 3.5h at $100^{\circ}C$ and 12.5h at $95^{\circ}C$. Polymerase chain reaction parameters of TNA1_pol such as error-rate, processivity, and extension rate were measured in comparison with rTaq, Pfu, and KOD DNA polymerases. TNA1_pol averaged one incorrect bp every 4.45 kilobases (kb), and had a processivity of 150 nucleotides (nt) and an extension rate of 60 bases/s. Thus, TNA1_pol has a much faster elongation rate than Pfu DNA polymerase with 7-fold higher fidelity than that of rTaq.

Extremophiles as a Source of Unique Enzymes for Biotechnological Applications

  • Antranikian G.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.39-45
    • /
    • 2001
  • Extremophiles are unique microorganisms that are adapted to survive in ecological niches such as high or low temperatures, extremes of pH, high salt concentrations and high pressure. These unusual microorganisms have unique biochemical features which can be exploited for use in the biotechnological industries. Due to the high biodiversity of extremophilic archaea and bacteria and their existence in various biotopes a variety of biocatalysts with different physicochemical properties have been discovered. The extreme molecular stability of their enzymes, membranes and the synthesis of unique organic compounds and polymers make extremophiles interesting candidates for basic and applied research. Some of the enzymes from extremophiles, especially hyperthermophilic marine microorganisms (growth above $85^{\circ}C$), have already been purified in our laboratory. These include the enzyme systems from Pyrococcus, Pyrodictium, Thermococcus and Thermotoga sp. that are involved in polysacharide modification and protein bioconversion. Only recently, the genome of the thermoalkaliphilic strain. Anaerobranca gottschalkii has been completely sequenced providing a unique resource of novel biocatalysts that are active at high temperature and pH. The gene encoding the branching enzyme from this organism was cloned and expressed in a mesophilic host and finally characterized. A novel glucoamylase was purified from an aerobic archaeon which shows optimal activity at $90^{\circ}C$ and pH 2.0. This thermoacidophilic archaeon Picrophilus oshimae grows optimally at pH 0.7 and $60^{\circ}C$. Furthermore, we were able to detect thermoactive proteases from two anaerobic isolates which are able to hydrolyze feather keratin completely at $80^{\circ}C$ forming amino acids and peptides. In addition, new marine psychrophilic isolates will be presented that are able to secrete enzymes such as lipases, proteases and amylases possessing high activity below the freezing point of water.

  • PDF