• Title/Summary/Keyword: Thermodynamic parameters

Search Result 490, Processing Time 0.029 seconds

DNA-Binding and Thermodynamic Parameters, Structure and Cytotoxicity of Newly Designed Platinum(II) and Palladium(II) Anti-Tumor Complexes

  • Mansouri-Torshizi, Hassan;Saeidifar, Maryam;Khosravi, Fatemeh;Divsalar, Adeleh;Saboury, Ali.Akbar;Ghasemi, Zahra Yekke
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.947-955
    • /
    • 2011
  • The complexes [Pd(bpy)(Hex-dtc)]$NO_3$ and [Pt(bpy)(Hex-dtc)]$NO_3$ (bpy is 2,2'-bipyridine and Hex-dtc is hexyldithiocarbamato ligands) were synthesized and characterized by elemental analysis and spectroscopic studies. The cytotoxicity assay of the complexes has been performed on chronic myelogenous leukemia cell line, K562, at micromolar concentration. Both complexes showed cytotoxic activity far better than that of cisplatin under the same experimental conditions. The binding parameters of the complexes with calf thymus DNA (CT-DNA) was investigated using UV-visible and fluorescence techniques. They show the ability of cooperatively intercalating in CT-DNA. Gel filtration studies demonstrated that platinum complex could cleave the DNA. In the interaction studies between the Pd(II) and Pt(II) complexes with CT-DNA, several binding and thermodynamic parameters have been determined, which may provide deeper insights into the mechanism of action of these types of complexes with nucleic acids.

Development of a Computer Program to Calculate Thermodynamic Properties of Nitrogen (질소의 열역학 상태량 계산을 위한 전산 프로그램 개발)

  • Park, Kyoung-Kyhn
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1667-1671
    • /
    • 2003
  • A computer program to calculate properties of nitrogen is developed. Procedures for the calculation is briefly discussed. The program calculates unknown thermodynamic properties fixing the state with two independent input properties. If input value by user is inappropriate, it displays an error message and replaces the input value with an appropriate one. In addition user can change units with easy. The program developed in this work can be utilized to calculate parameters required for the simulation and design of an equipment using nitrogen.

  • PDF

Effect of Number and Location of Amine Groups on the Thermodynamic Parameters on the Acridine Derivatives to DNA

  • Kwon, Ji Hye;Park, Hee-Jin;Chitrapriya, Nataraj;Han, Sung Wook;Lee, Gil Jun;Lee, Dong Jin;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.810-814
    • /
    • 2013
  • The thermodynamic parameters for the intercalative interaction of structurally related well known intercalators, 9-aminoacridine (9AA) and proflavine (PF) were determined by means of fluorescence quenching study. The fluorescence intensity of 9AA decreased upon intercalation to DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$]. A van't Hoff plot was constructed from the temperature-dependence of slope of the ratio of the fluorophore in the absence and presence of a quencher molecule with respect to the quencher concentration, which is known as a Stern-Volmer plot. Consequently, the thermodynamic parameters, enthalpy and entropy change, for complex formation was calculated from the slope and y-intercept of the van't Hoff plot. The detailed thermodynamic profile has been elucidated the exothermic nature of complex formation. The complex formation of 9AA with DNA, poly[$d(A-T)_2$] and poly[$d(G-C)_2$] was energetically favorable with a similar negative Gibb's free energy. On the other hand, the entropy change appeared to be unfavorable for 9AA-poly[$d(G-C)_2$] complex formation, which was in contrast to that observed with native DNA and poly[$d(A-T)_2$] cases. The equilibrium constant for the intercalation of PF to poly[$d(G-C)_2$] was larger than that to DNA, and was the largest among sets tested despite the most unfavorable entropy change, which was compensated for by the largest favorable enthalpy. The favorable hydrogen bond contribution to the formation of the complexes was revealed from the analyzed thermodynamic data.

Estimation of characteristic parameters of refrigerants by group contribution method (집단 기여법에 의한 냉매의 특성인자 예측)

  • Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.125-132
    • /
    • 1999
  • Studies are being done to replace conventional refrigerants with alternatives that have low or no ozone depletion and greenhouse warming Potentials, yet possess appropriate pro perties for a refrigeration cycle. To achieve this goal, a consistent set of thermodynamic properties of the working fluid is required. A common problem with the possible alternative refrigerants is that sufficient experimental data do not exist, thus making it difficult to develp complete equations of state that can predict properties in all regions including the vapor-liquid equilibrium. One solution is the use of the generalized equation of state correlations that can predict thermodynamic properties with a minimum number of characteristic parameters. Characteristic parameters required for the generalized equation of state are, in general, critical temperature, critical pressure, critical volume and normal boiling temperature. In this study, estimation of these characteristic parameters of refrigerants by group contribution method is developed.

  • PDF

Facile Evaluation of Thermodynamic Parameters for Reverse Thermochromism of Indolinobenzospiropyran-6-carboxylates in Aqueous Binary Solvents

  • Keum, Sam-Rok;Ma, So-Young;Lim, Hyun-Woo;Han, Tae-Hwi;Choi, Kyu-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2683-2688
    • /
    • 2012
  • The position of the thermodynamic equilibrium for reverse thermochromic spiropyran 6-carboxylates (SP-COOHs) was easily determined in aqueous binary mixtures, such as water-methanol, water-acetonitrile and water-dimethyl sulfoxide. The existence of more than one type of interconvertible species of the ring-opened form of SP-COOH in aqueous binary solvents enables us to evaluate the molar extinction coefficients of the ring-opened species of SP-COOH and to obtain the thermodynamic parameters.

Oil-Water Interface Transfer of Cefoperazone Pivaloyloxymethyl Ester (세포페라존피바로일옥시메칠에스텔의 유-수 계면 이행에 관한 연구)

  • Choi, Young-Wook;Kim, Johng-Kap
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 1989
  • Kinetic and thermodynamic aspects of the interface transfer of cefoperazone and its pivaloyloxymethyl ester were studied in a two-phase system composed of aqueous buffers and n-octanol by using the absolute reaction rate theory. In terms of the net thermodynamic parameters for the process, ${\Delta}S$ increased and ${\Delta}F$ decreased as the lipophilicity increased. With the increased ratio of forward $(k_f)$ to backward rate constants $(k_b)$, the ester was more lipophilic than cefoperazone, but the aqueous solubility was reduced.

  • PDF

Thermodynamic Analysis of Power Generation Cycle Utilizing LNG Cold Energy (LNG 냉열을 이용하는 동력사이클 열역학 해석)

  • 최권일;장홍일
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). The power cycle used the air or water at room temperature as a heat source and the LNG at cryogenic temperature as a heat sink. Among manypossible configurations of the cycle. the open Rankine cycle. and the closed Brayton cycle, and the closed Rankine cycle are selected for the basic analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters such as the pressure ratio. the mass flow rate. the adiabatic efficiency. the heat exchanger effectiveness. or the working fluid. The optimal conditions for the parameters are presented to maximize the power output and the design considerations are discussed. It is concluded that the open Rankine cycle is the most recormmendable both in thermodynamic efficency and in practice.

  • PDF

Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC) with Double Expansion (이중 팽창을 채용한 유기 플래시 사이클(OFC)의 열역학적 성능 특성)

  • KIM, KYOUNG HOON;HAN, CHUL HO;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.483-489
    • /
    • 2018
  • Recently proposed organic flash cycle (OFC) was shown to potentially improve power generation using low grade heat source. In this paper, a thermodynamic performance is carried out for a modified OFC employed double expansions. Effects of the selection of working fluid and the important system parameters such as the temperatures in flash evaporators on the system performance were extensively investigated. Results showed that the system performances are strongly influenced with the system parameters and selection of the working fluid, and the power generation can be increased compared to the basic OFC.

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Adsorption Characteristics of As and Se Ions by HTMAB Modified Anthracite (HTMAB로 표면처리된 안트라사이트에 의한 비소 및 셀렌 이온의 흡착 특성)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is -24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.