• Title/Summary/Keyword: Thermodynamic parameters

Search Result 490, Processing Time 0.023 seconds

The Pressure Effect of the Association of 2,4,6,N-Tetramethyl Pyridinium Iodide in Ethanol-Water Mixture (에탄올-물 혼합용매내에서 2,4,6,N-Tetramethyl Pyridinium Iodide의 회합에 대한 압력효과)

  • Jung-Ui Hwang;Jong-Gi Jee;Young-Hwa Lee;Uei-Ha Woo
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 1984
  • The ionic association constant(K) of 2,4,6, N-tetramethyl pyridinium iodide (TeMPI) in 95 volume percentage ethanol-water mixture were determined by a modified UV and conductance method at $25^{\circ}C$ to $50^{\circ}C$ under 1 to 2,000 bars. The K values increase with increasing pressure and have maximum value at $40^{\circ}C$. The partial molar volume hange (${\Delta}V$) has relatively small negative value and the absolute values of ${\Delta}$ are minimum at $40^{\circ}C$. The ion size parameter(a) of TeMPI have maximum value at $40^{\circ}C$. {\Delta}H^{\circ}$ values are zero, positive and negative at 40^{\circ}C$, $25^{\circ}C$ and $50^{\circ}C$ respectively. Other thermodynamic parameters such as the changes of standard entropy ({\Delta}S^{\circ}$) and free energy {\Delta}G^{\circ}$ were evaluated. From these experimental results, we came to conclusion that TeMPI is stabilized by the elevation of pressure and that of temperature below $40^{\circ}C$ but weakly dimerized at $40^{\circ}C$ because of the intermolecular hydrophobic interaction of eight methyl groups of two molecules. And it thermally decomposed above $50^{\circ}C$.

  • PDF

The Thermodynamics of the Formation of Pyridine-Halogen and Interhalogens Charge Transfer Complexes (피리딘과 할로겐 또는 할로겐간 화합물 사이의 전하이동 착물생성에 관한 열역학적 연구)

  • Oh Cheun Kwun;Jin Burm Kyong;Kee Joon Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.363-368
    • /
    • 1982
  • Ultraviolet spectrophotometric investigations were carried out on the systems of pyridine with iodine, iodine monobromide and iodine monochloride in carbon tetrachloride. The results reveal the formation of the one to one molecular complexes of the type, $C_5H_5N{\cdot}I_2$, $ C_5H_5$N{\cdot}IBr and $ C_5H_5N{\cdot}ICl$. Considering ${\lambda}_max$ according to the formation of charge transfer complexes has the blue shift with the increasing temperatures$25, 40, 60^{\circ}C$ the equilibrium constants K and molar absorptivities $\varepsilon$ of complexes were obtained. From these values, the thermodynamic parameters ${\Delta}H$, ${\Delta}G$ and ${\Delta}S$ for the formation of the above charge transfer complexes were obtained. These results indicate that the relative stabilities of iodine, iodine monobromide and iodine monochloride complexes with pyridine increase in the order, $ C_5H_5N{\cdot}I_2$ < $ C_5H_5N{\cdot}IBr$ <$ C_5H_5N{\cdot}ICl$. This may be a measure of relative acidity of halogen and interhalogen toward pyridine and can be explained by the polarizabilities of electron acceptors and the difference of electronegativities of halogen atoms.

  • PDF

Gastric juice and Realgar and Orpiment Mineral Medicine Reaction; Reaction Path and Speciation Modeling in Human Body (웅황과 자황의 소화 반응과 인체내 존재형태에 대한 예측 모델링)

  • Kim Sun Ok;Park Maeng Eon;Shin Soon Shik;Kim Gyeang Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.365-372
    • /
    • 2002
  • The mineral medicines mean a sort of mineral or rock for medical treatment and natural material using their chemical components and physical properties. In this study, it was apprehended the mineralogical characteristics of As-bearing group mineral medicines. The extraction test is an vitro test system for predicting the bioavailability of the major and minor elements from mineral medicines and incorporates gastrointestinal tract parameters representative of a human(including stomach and small intestinal pH, stomach mixing time and velocity). The results of the extraction test are used for reaction path modeling in human body. Reaction path modeling in human body can predict digestion with gastric juice as well as bioavailability, speciation. Also, it can predict accumulation of arsenic as pH condition. As the results of the extraction test for digestion, the amounts of Fe extraction was the highest, followed by As, Ca, Ni. In addition, as the results of the reaction path modeling between arsenic compounds and gastric juice using thermodynamic data, when absorbed, major species are followed by H₃As₃S/sub 6/(aq), As₃S/sub 6/ (aq), AsO/sup +/, H₂As₃S/sup 6-/, H₂AsO/sup 3-/, HAs₃S6/sup 2-/, HAsO/sub 3//sup 2-/ and AsO/sub 3//sup 3-/. Specifically the concentration of H₃As₃S/sub 6/(aq) is the highest. As pH increases, the concentration of H₂AsO/sup 3-/, HAsO/sub 3//sup 2-/, HAsO/sub 3//sup 3-/, HAs₃S/sub 6//sup 2-/, H₂As₃S/sup 6-/, and H₃As₃S/sub 6/ increases, whereas the concentration of H₃As₃S/sub 6/ and AsO/sup +/ decreases. On the results of this study, it is able to find out effective and toxic components of poisonous arsenic group of mineral medicines and expected to be widely used for the development of new medicines.

Effects of Sulfobutyl Ether $\beta$-Cyclodextrin on Physicochemical Properties of Dexamethasone Dipropionate

  • Moon, Jee-Hyun;Oh, Ik-Sang;Chun, In-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.116-116
    • /
    • 1997
  • Complex formation of practically insoluble dexamethasone dipropionate (DDP) with ${\beta}$-cyclodextrin (${\beta}$-CD), dimethyl-${\beta}$-cyclodextrin (DMCD), trimethyl-${\beta}$-cyclodextrin (TMCD), 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD) and sulfobutyl ether ${\beta}$-cyclodextrin (SBCD) in water was investigated by solubility method at various temperatures. Water solubility of DDP was found to be 1.78 $\mu\textrm{g}$/$m\ell$ at 37$^{\circ}C$. Propylene glycol (PG)-water cosolvent increased the solubility of DDP, but the solubilization was not sufficient (8.93 $\mu\textrm{g}$/$m\ell$ in 20% PG). The addition of CD markedly increased the solubility of DDP in water, and A$\sub$L/ type phase solubility diagrams were obtained with ${\beta}$-CD, TMCD, HPCD and SBCD, where the apparent stability constants of the soluble complexes at 25$^{\circ}C$ were determined to be 1388, 216, 1054, and 1992 M$\^$-1/, respectively. However, DMCD remarkably increased the solubility of DDP, and showed an A$\sub$P/ type diagram, suggesting that DMCD forms a soluble complex of high order with DDP. The stability constant for the DDP-DMCD complex at 25$^{\circ}C$ was determined to be 19132 M$\^$-1/. The thermodynamic parameters were calculated for the inclusion complex formation in aqueous solution. CD (1${\times}$10$\^$-2/M) remarkably decreased the partition coefficients of DDP between isopropyl myristate/water in the order of TMCD < ${\beta}$-CD < HPCD < SBCD < DMCD, and in squalane/water system in the order of HPCD < TMCD < ${\beta}$-CD < DMCD < DMCD $\leq$ SBCD. This finding represents that, in a o/w type cream, cyclodextrin complexation with DDP may result in high concentration of DDP in aqueous phase. The permeation of DDP through a cellophane membrane was highly suppressed by the addition of CD, and the degree of suppression was different among CDs, indicating that CD may control the skin permeation of DDP. The dissolution rates of solid dispersions with CDs were much faster than those of drugs alone and corresponding physical mixtures. All DDP-CD solid dispersions exceeded the equilibrium solubility. Consequently these results suggest that complex formation of DDP with CDs may provide useful means to markedly enhance the solubility, and CDs are useful in the semi-solid preparations such as creams and gels for topical application.

  • PDF

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.

Thermodynamics on the Micellization of Pure Cationic(DTAB, TTAB, CTAB), Nonionic(Tween-20, Tween-40, Tween-80), and Their Mixed Surfactant Systems (순수 양이온성(DTAB, TTAB, CTAB), 비이온성(Tween-20, Tween-40, Tween-80) 및 이들 혼합 계면활성제의 미셀화에 대한 열역학적 연구)

  • Lee, Nam-Min;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.679-687
    • /
    • 2013
  • The critical micelle concentration (CMC) and counter-ion binding constant (B) of the pure cationic surfactants (DTAB, TTAB, CTAB), nonionic surfactants (Tween-20, Tween-40, Tween-80), and their mixed surfactants (TTAB/Tween-20, TTAB/Tween-40, TTAB/Tween-80) in aqueous solutions of 4-chlorobenzoic acid were determined by using the UV/Vis absorbance method and the conductivity method from 284 K to 312 K. Thermodynamic parameters (${\Delta}G^o{_m}$, ${\Delta}H^o{_m}$, and ${\Delta}S^o{_m}$), associated with the micelle formation of those surfactant systems, have been estimated from the dependence of CMC and B values on the temperature and carbon length of surfactant molecules. The calculated values of ${\Delta}G^o{_m}$ are all negative within the measured range but the values of ${\Delta}H^o{_m}$ and ${\Delta}S^o{_m}$ are positive or negative, depending on the length of the carbon chain and surfactant.

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

Effects of Residual Solvents in the Phase Transition, Transition Enthalpy, and Transition Temperature of Phospholipid Membranes (잔류 유기 용매가 모델 세포 지질막의 상전이, 상전이 엔탈피 및 상전이 온도에 미치는 영향)

  • An, Eun Seol;Choi, Jae Sun;Lee, Dong Kuk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Lipid membranes composed of phosphatidylcholine (PC) are used in biophysical study to mimic cellular membranes and interactions between the membrane and chemicals, where organics solvents are used in dissolving lipids or chemicals. Later, solvents are removed from the solution under nitrogen gas at room temperature, followed by the further removal of the solvent at vacuum condition for several hours. In this process, some solvents are easily removed under described conditions above and others are required more severe conditions. In this study, $^{31}P$ solid-state nuclear magnetic resonance (SSNMR) techniques and differential scanning calorimetry (DSC) were used to see any changes in the line shapes of $^{31}P$ NMR spectra of multilamellar vesicles (MLVs) samples of POPC and in the phase change temperature of multilamellar vesicles (MLVs) of DPPC in DSC thermogram with or without any residual solvents. The thermodynamic parameters associated with the solvents did exhibit noticeable changes depending on solvent types. Thus, it is concluded that solvents should be carefully chosen and removed completely and experimental results should also be interpreted with caution particularly for the experiments investigating lipid phase changes and related topics.

The Thermodynamics of the Formation of Pyridines-Iodine Charge Transfer Complexes (피리딘류와 요오드사이의 전하이동착물생성에 관한 열역학적 연구)

  • Oh Cheun Kwun;Jin Burm Kyong;Myong Kyun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.228-235
    • /
    • 1981
  • Ultraviolet spectrophotometric investigation were carried out on the systems of pyridine, ${\beta}$-picoline and 3,5-lutidine with iodine in carbon tetrachloride. The results reveal the formation of one to one molecular complexes of the type, $C_5H_5N{\cdot}I_2$, ${\beta}-C_5H_4(CH_3)N{\cdot}I_2$ and 3,5-$C_5H_3(CH_3)_2N{\cdot}I_2$. The equrilibrium constants of complexes were obtained in consideration of that absorption maxima have the blue shift with the increasing temperatures according to the formation of the charge transfer complexes. The thermodynamic parameters, ${\Delta}H$, ${\Delta}G$ and ${\Delta}S$ for the formation of the charge transfer complexes were calculated from these values. These results indicated that the relative stabilities of the pyridine, ${\beta}$-picoline and 3,5-lutidine complexes with iodine increase in the order, pyridine < ${\beta}$-picoline < 3,5-lutidine. These results were supposed to be the influence resulted from increase of electron density by the positive inductive effect and the dipole moment of the steric hindrance effect. And this results were compared and discussed with polymethylbenzene-iodine CT-complexes.

  • PDF

Determination of the Langmuir and Temkin Adsorption Isotherms of H for the Cathodic H2 Evolution Reaction at a Pt/KOH Solution Interface Using the Phase-Shift Method

  • Chun Jang-H.;Jeon Sang-K.;Chun Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The phase-shift method for determining the Langmuir, Frumkin, and Temkin adsorption isotherms ($\theta_H\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at a Pt/0.1 M KOH solution interface has been proposed and verified using cyclic voltammetric, differential pulse voltammetric, and electrochemical impedance techniques. At the Pt/0.1 M KOH solution interface, the Langmuir and Temkin adsorption isotherms ($\theta_H\;vs.\;E$), the equilibrium constants ($K_H=2.9X10^{-4}mol^{-1}$ for the Langmuir and $K_H=2.9X10^{-3}\exp(-4.6\theta_H)mol^{-1}$ for the Temkin adsorption isotherm), the interaction parameters (g=0 far the Langmuir and g=4.6 for the Temkin adsorption isotherm), the rate of change of the standard free energy of $\theta_H\;with\;\theta_H$ (r=11.4 kJ $mol^{-1}$ for g=4.6), and the standard free energies (${\Delta}G_{ads}^{\circ}=20.2kJ\;mol^{-1}$ for $k_H=2.9\times10^{-4}mol^{-1}$, i.e., the Langmuir adsorption isotherm, and $16.7<{\Delta}G_\theta^{\circ}<23.6kJ\;mol^{-1}$ for $K_H=2.9\times10^{-3}\exp(-4.6\theta_H)mol^{-1}$ and $0.2<\theta_H<0.8$, i.e., the Temkin adsorption isotherm) of H for the cathodic HER are determined using the phase-shift method. At intermediate values of $\theta_H$, i.e., $0.2<\theta_H<0.8$, the Temkin adsorption isotherm ($\theta_H\;vs.\;E$) corresponding to the Langmuir adsorption isotherm ($\theta_H\;vs.\;E$), and vice versa, is readily determined using the constant conversion factors. The phase-shift method and constant conversion factors are useful and effective for determining the Langmuir, Frumkin, and Temkin adsorption isotherms of intermediates for sequential reactions and related electrode kinetic and thermodynamic data at electrode catalyst interfaces.