• 제목/요약/키워드: Thermomechanical Treatment

검색결과 78건 처리시간 0.028초

Cu-Cr 합금의 인장강도와 전기전도도에 미치는 Cr 첨가량 및 가공열처리의 영향 (Effects of Cr content and Thermomechanical Treatment on Tensile Strength and Electrical Conductivity of Cu-Cr Alloys)

  • 김기태;정운재;신한철;최종술
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.17-21
    • /
    • 2001
  • The effects of Cr content above its solubility limit and thermomechanical treatment on tensile strength and electrical conductivity of Cu-Cr alloys were studied to obtain optimum Cr content exhibiting a high tensile strength without degradation of electrical conductivity. The increase in Cr content above the solubility limit increased tensile strength of Cu-Cr alloys without deterioration of the electrical conductivity. The electrical conductivity was not affected by cold rolling. The electrical conductivity of a Cu-3.5%Cr alloy subjected to cold rolling ${\rightarrow}$ aging treatment ($450^{\circ}C{\times}1hr$) ${\rightarrow}$ cold rolling was equal to that of the alloy subjected to cold rolling ${\rightarrow}$ aging treatment. However, the tensile strength of the alloy subjected to the former thermomechanical treatment was superior to that of the alloy subjected to the latter thermomechanical treatment at all the deformation degrees.

  • PDF

가공열처리 및 2단시효처리에 의한 8090알루미늄 합금의 석출거동 (PRECIPITAlON BEHAVIOR OF 8090 ALUMINIUM ALLOY BY HERMOMECANICAL AND DUPLEX AGING TREAMENT)

  • 이학용;김석원;우기도
    • 열처리공학회지
    • /
    • 제7권4호
    • /
    • pp.270-276
    • /
    • 1994
  • The effects of thermomechanical and duplex aging treatment on precipitation behavior were investigated for the 8090 aluminium alloy by tensile test, hardness test, plane-strain fracture toughness test and electron microscope. Both pre-aging stretch and duplex aging with pre-aging stretch were effective to homogenize the distribution of S' phase in this alloys. The latter makes more homogeneous distribution of S' phase than that of the former, but the sizes of S' phase in both specimens are almost same. The size and distribution of 0' phase were not changed by thermomechanical or duplex aging treatment. The strength was increased by thermomechanical treatment, but the elongation was decreased. Duplex aging treatment couldn't change the strength and elongation. Pre-aging stretch and duplex aging with pre-aging stretch have same effect on the strength and elongation. The increase of strength by thermomechanical treatment in 8090 alumunium alloy was caused by homogeneously precipitated S' phase.

  • PDF

Enhanced thermomechanical properties of poly(ethylene oxide) and functionalized bacterial cellulose nanowhiskers composite nanofibers

  • 윤옥자
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.376-376
    • /
    • 2016
  • Poly(ethylene oxide) (PEO)/functionalized bacterial cellulose nanowhiskers (f-BCNW) (0.1 wt%) composite nanofibers were fabricated by electrospinning process and the thermomechanical properties were significantly enhanced more than the PEO and PEO/bacterial cellulose nanowhiskers (BCNW) (0.1 wt%) composite nanofibers. The functionalization of BCNW (f-BCNW) was performed by microwave plasma treatment for effects of nitrogen functionalization of chemically-driven BCNW. The N-containing functional groups of f-BCNW enhanced chemical bonding between the hydroxyl groups of the polymer chains in the PEO matrix and diameter size of PEO/f-BCNW (0.1 wt%) composite nanofibers were decreased more than PEO and PEO/BCNW (0.1 wt%) composite nanofibers on the same concentration. The strong interfacial interactions between the f-BCNW nanofillers and polymer matrix were improved the thermomechanical properties such as crystallization temperature, weight loss and glass transition temperature (Tg) compared to PEO and PEO/BCNW composites nanofibers. The results demonstrated that N2 plasma treatment of BCNW is very useful in improving thermal stability for bio-applications.

  • PDF

7050 AI 합금의 가공열처리가 미세조직변화와 피로성질에 미치는 영향 (The Effect of Thermomechanical Treatment on the Microstructural Changes and Fatigue Properties in 7050 Al Alloy)

  • 김문호;권숙인
    • 열처리공학회지
    • /
    • 제4권4호
    • /
    • pp.24-33
    • /
    • 1991
  • The effects of thermomechanical treatments on microstructure and fatigue properties of 7050 Al alloy were investigated. The precipitation kinetics changed to a faster rate due to cold deformation employed in this special TAHA thermomechanical treatments including pre-aging, plastic deformation and two step final-aging. The G.P. zones in the under-aged condition were cut by dislocations and dissolved during the plastic deformation. During the low cycle fatigue, the T6' condition showed cyclic hardening behavior whereas the TMT5, TMT27 and T76 conditions showed cyclic softening at above 0.7% total strain amplitudes. The ${\Delta}K_{th}$ value of TMT27 was improved more than two times, compared with that of T76 condition. The T6' with small shearable precipitates resulted in the markedly high ${\Delta}K_{th}$ value. This is thought to be resulted from dislocation reversibility and roughness-induced crack closure due to planarity of slip.

  • PDF

NITINOL 형상기억합금의 열적/기계적 특성 평가 (Evaluation of Thermomechanical Characteristics of NITINOL Shape Memory Alloy)

  • 윤성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.683-686
    • /
    • 2001
  • The thermomechanical characteristics of NITINOL shape memory alloy were evaluated using DSC with small samples and DMA with three-point bending specimens. The shape memory alloy of 54.4Ni/45.5Ti wt.% was used so that the austenite finish temperature was in the range of $50~100^{\circ}C$. Two types of sample were tested in the experiments corresponding to as-received and annealed conditions. Simple beam bending theory was used to calculate the dynamic moduli of the shape memory alloy. According to the results, a large discrepancy in transformation temperatures was found between DSC and DMA techniques. Annealing treatment was found to suppress the R-phase transformation during cooling and the secondary plateau in the austenite transformation. Such a heat treatment was also significantly influenced to raise the transformation temperatures and the moduli of the shape memory alloy.

  • PDF

Rolling Contact Fatigue of Hot-forged Steels out of Prealloyed Powders and Powder Blend

  • Dorofeyev, Vladimir;Sviridova, Anna
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.559-560
    • /
    • 2006
  • Powder forging is used for heavy-loaded parts (rings of rolling-contact bearings, gears etc.) production. Rolling contact fatigue is material property values of which characterize possibility of practical utilization of such parts. Rolling contact fatigue of some steels obtained out of prealloyed powders Astaloy CrM, Atomet 4601, Atomet 4901 and powder blends iron-carbon-nickel by hot forging is studied in the present paper. Effect of various kinds of heat and thermomechanical treatment on rolling contact fatigue is determined. Thermomechanical treatment provides optimal values of rolling contact fatigue. In this case steel structure contains up to 40% of retained metastable austenite which is transformed to martensite on trials. Thus typically crack is generated on residual pores and non-metallic inclusions instead of martensite zones in wrought steels.

  • PDF

어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구 (Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions)

  • 여동진;윤성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF

철강(鐵鋼) 및 알루미늄재료(材料)의 기계적(機械的) 성능(性能)에 미치는 TMT(thermomechanical treatment)의 영향 (The Effect of TMT on Mechanical Properties of Steel & Aluminum Alloy)

  • 소명기
    • 산업기술연구
    • /
    • 제1권
    • /
    • pp.53-60
    • /
    • 1981
  • A study has been performed on the effect of TMT(thermomechanical treatment) on the mechanical properties of steel and aluminum alloys. Improvement of the mechanical properties on steel by HTMT is due to refinement of prior austenite grain size, martensite lath size and the distribution of fine carbide precipitates and on aluminum alloy by ITMT is due to grain size refinement, homogeneous distribution of small second phase particles and retardation of the recrystallization.

  • PDF

316L 스테인리스강의 기계적 성질에 미치는 가공 열처리의 영향 (Effect of Thermomechanical Treatment on the Mechanical Properties of 316L Stainless Steel)

  • 강창룡;권민기
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.100-105
    • /
    • 2014
  • This study is to investigate the effect of thermo mechanical treatment on the mechanical properties of 316L stainless steel. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite was formed by deformation. With increasing number of thermo mechanical treatment, volume fraction of martensite was increased rapidly, and then unchanged. With increasing number of thermo mechanical treatment, hardness and strength was increased rapidly, and then unchanged while elongation was decreased rapidly, and then unchanged. With increasing volume fraction of martensite formed by thermo mechanical treatment, hardness and strength was increased rapidly, elongation was decreased rapidly. Thus, hardness, strength and elongation of thermo mechanical treated 316L stainless steel was strongly affected by martensite formed by thermo mechanical treatment. Good combination of strength and elongation was obtained from thermomechanical treatment.

Effect of irradiation temperature on the nanoindentation behavior of P92 steel with thermomechanical treatment

  • Huang, Xi;Shen, Yinzhong;Li, Qingshan;Li, Xiaoyan;Zhan, Zixiong;Li, Guang;Li, Zhenhe
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2408-2417
    • /
    • 2022
  • The nanoindentation behavior of P92 steel with thermomechanical treatment under 3.5 MeV Fe13+ ion irradiation at room temperature, 400 and 700 ℃ was investigated. Pop-in behavior is observed for all the samples with and without irradiation at room temperature, while the temperature dependence of pop-in behavior is only observed in irradiated samples. The average load and penetration depth at the onset of pop-in increase as the irradiation temperature increases, in line with the results of the maximum shear stress. Irradiation induced hardening is exhibited for all irradiated samples, but there is a significant reduction in the hardness of sample irradiated at 700 ℃ in comparison to the samples irradiated at room temperature and 400 ℃. The ratio of hardness to elastic modulus for all samples decreases with increasing penetration depth except for samples at 700 ℃. With the increasing of irradiation temperature, the ratio of the irreversible work to the total work gradually decreases. In contrast, it increases for samples without irradiation.