• Title/Summary/Keyword: Thermomechanical deformation

Search Result 74, Processing Time 0.027 seconds

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.85-104
    • /
    • 2013
  • The present work deals with the thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined trigonometric shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-parameter Pasternak foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending response of functionally graded plates.

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

Plastic Deformation Behavior Of Al-Mg-Si Alloy At The Elevated Temperature (Al-Mg-Si합금의 고온 소성 변형 거동)

  • 권용남;이영선;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.172-175
    • /
    • 2003
  • Thermomechanical behavior of Al-Mg-Si alloys have been studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests have been carried out to get the basic information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys has been carried out and analyzed by the comparison with the compression tests. Microstructural features after forging have been discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we have found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains have been found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

  • PDF

Plastic Deformation Behavior of Al-Mg-Si Alloys at the Elevated Temperatures (Al-Mg-Si 합금의 고온 소성 변형 거동)

  • 권용남;이영선;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Thermomechanical behavior of Al-Mg-Si alloys was studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests were carried out to get the information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys carried out and analyzed by the comparison with the compression tests. Microstructural features after forging were discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains were found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

The Effect of Thermomechanical Treatment on the Microstructural Changes and Fatigue Properties in 7050 Al Alloy (7050 AI 합금의 가공열처리가 미세조직변화와 피로성질에 미치는 영향)

  • Kim, M.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.24-33
    • /
    • 1991
  • The effects of thermomechanical treatments on microstructure and fatigue properties of 7050 Al alloy were investigated. The precipitation kinetics changed to a faster rate due to cold deformation employed in this special TAHA thermomechanical treatments including pre-aging, plastic deformation and two step final-aging. The G.P. zones in the under-aged condition were cut by dislocations and dissolved during the plastic deformation. During the low cycle fatigue, the T6' condition showed cyclic hardening behavior whereas the TMT5, TMT27 and T76 conditions showed cyclic softening at above 0.7% total strain amplitudes. The ${\Delta}K_{th}$ value of TMT27 was improved more than two times, compared with that of T76 condition. The T6' with small shearable precipitates resulted in the markedly high ${\Delta}K_{th}$ value. This is thought to be resulted from dislocation reversibility and roughness-induced crack closure due to planarity of slip.

  • PDF

A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates

  • Boussoula, Abderrafik;Boucham, Belhadj;Bourada, Mohamed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.197-218
    • /
    • 2020
  • In this work, thermomechanical flexural analysis of functionally graded material sandwich plates with P-FGM face sheets and E-FGM and symmetric S-FGM core is performed by employing a nth-order shear deformation theory. A novel type of S-FGM sandwich plates, namely, both P-FGM face sheets and a symmetric S-FGM hard core are considered. By employing only four unknown variables, the governing equations are obtained based on the principle of virtual work and then Navier method is used to solve these equations. Analytical solutions are deduced to compute the stresses and deflections of simply supported S-FGM sandwich plates. The effects of volume fraction variation, geometrical parameters and thermal load on thermomechanical flexural behavior of the symmetric FGM sandwich plates are investigated.

A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates

  • Benbakhti, Abdeldjalil;Bouiadjra, Mohamed Bachir;Retiel, Noureddine;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.975-999
    • /
    • 2016
  • This work investigates a thermomechanical bending analysis of functionally graded sandwich plates by proposing a novel quasi-3D type higher order shear deformation theory (HSDT). The mathematical model introduces only 5 variables as the first order shear deformation theory (FSDT). Unlike the conventional HSDT, the present one presents a novel displacement field which includes undetermined integral variables. The mechanical properties of functionally graded layers of the plate are supposed to change in the thickness direction according to a power law distribution. The core layer is still homogeneous and made of an isotropic ceramic material. The governing equations for the thermomechanical bending investigation are obtained through the principle of virtual work and solved via Navier-type method. Interesting results are determined and compared with quasi-3D and 2D HSDTs. The influences of functionally graded material (FGM) layer thickness, power law index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are discussed.

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations

  • Attia, Amina;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.453-464
    • /
    • 2018
  • In this paper, an efficient higher-order shear deformation theory is presented to analyze thermomechanical bending of temperature-dependent functionally graded (FG) plates resting on an elastic foundation. Further simplifying supposition are made to the conventional HSDT so that the number of unknowns is reduced, significantly facilitating engineering analysis. These theory account for hyperbolic distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Nonlinear thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from the principle of virtual displacements. Analytical solutions for the thermomechanical bending analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent FG plates and validated with those of other shear deformation theories. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature field on the thermomechanical bending characteristics. It can be concluded that the present theory is not only accurate but also simple in predicting the thermomechanical bending responses of temperature-dependent FG plates.

Effects of Cr content and Thermomechanical Treatment on Tensile Strength and Electrical Conductivity of Cu-Cr Alloys (Cu-Cr 합금의 인장강도와 전기전도도에 미치는 Cr 첨가량 및 가공열처리의 영향)

  • Kim, Ki-Tae;Jung, Woon-Jae;Shin, Han-Chul;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.17-21
    • /
    • 2001
  • The effects of Cr content above its solubility limit and thermomechanical treatment on tensile strength and electrical conductivity of Cu-Cr alloys were studied to obtain optimum Cr content exhibiting a high tensile strength without degradation of electrical conductivity. The increase in Cr content above the solubility limit increased tensile strength of Cu-Cr alloys without deterioration of the electrical conductivity. The electrical conductivity was not affected by cold rolling. The electrical conductivity of a Cu-3.5%Cr alloy subjected to cold rolling ${\rightarrow}$ aging treatment ($450^{\circ}C{\times}1hr$) ${\rightarrow}$ cold rolling was equal to that of the alloy subjected to cold rolling ${\rightarrow}$ aging treatment. However, the tensile strength of the alloy subjected to the former thermomechanical treatment was superior to that of the alloy subjected to the latter thermomechanical treatment at all the deformation degrees.

  • PDF