• 제목/요약/키워드: Thin Film Transistor

검색결과 955건 처리시간 0.04초

Bottom Gate Microcrystalline Silicon TFT Fabricated on Plasma Treated Silicon Nitride

  • Huang, Jung-Jie;Chen, Yung-Pei;Lin, Hung-Chien;Yao, Hsiao-Chiang;Lee, Cheng-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.218-221
    • /
    • 2008
  • Bottom-gate microcrystalline silicon thin film transistors (${\mu}c$-Si:H TFTs) were fabricated on glass and transparent polyimide substrates by conventional 13.56 MHz RF plasma enhanced chemical vapor deposition at $200^{\circ}C$. The deposition rate of the ${\mu}c$-Si:H film is 24 nm/min and the amorphous incubation layer near the ${\mu}c$-Si:H/silicon nitride interface is unobvious. The threshold voltage of ${\mu}c$-Si:H TFTs can be improved by $H_2$ or $NH_3$ plasma pretreatment silicon nitride film.

  • PDF

Organic Thin Film Transistors with Gate Dielectrics of Plasma Polymerized Styrene and Vinyl Acetate Thin Films

  • Lim, Jae-Sung;Shin, Paik-Kyun;Lee, Boong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.95-98
    • /
    • 2015
  • Organic polymer dielectric thin films of styrene and vinyl acetate were prepared by the plasma polymerization deposition technique and applied for the fabrication of an organic thin film transistor device. The structural properties of the plasma polymerized thin films were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, and contact angle measurement. Investigation of the electrical properties of the plasma polymerized thin films was carried out by capacitance-voltage and current-voltage measurements. The organic thin film transistor device with gate dielectric of the plasma polymerized thin film revealed a low operation voltage of −10V and a low threshold voltage of −3V. It was confirmed that plasma polymerized thin films of styrene and vinyl acetate could be applied to functional organic thin film transistor devices as the gate dielectric.

플라즈마 표면처리에 따른 유기트랜지스터 특성 (Polymer thin film organic transistor characteristics with plasma treatment of interlayers)

  • 이붕주
    • 한국전자통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.797-803
    • /
    • 2013
  • 본 논문에서는 플라즈마 중합법에 의해 유기절연막을 제작 후 이를 이용한 유기박막트랜지스터의 특성향상을 위해 반도체박막의 표면처리를 하였다. 그 결과 반도체층의 $O_2$ 플라즈마을 활용하여 30 [sec]동안 표면처리시 박막의 표면에너지는 $38mJ/m^2$값에서 $72mJ/m^2$값으로 증가되었으며, 이에 따른 유기트랜지스터의 이동도는 평균값 기준하여 29% 증가된 $0.057cm^2V^{-1}s^{-1}$의 값으로 증가된 값을 얻을 수 있었다. 이로부터 반도체박막 표면개질에 의한 유기트랜지스터의 이동도 특성향상이 가능함을 알았다.

Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications

  • Chang, Seong-Pil;Ju, Byeong-Kwon
    • International journal of advanced smart convergence
    • /
    • 제1권1호
    • /
    • pp.61-64
    • /
    • 2012
  • The ultraviolet and visible light responsive properties of the amorphous indium gallium zinc oxide thin film transistor have been investigated. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistor operate in the enhancement mode with saturation mobility of $6.99cm^2/Vs$, threshold voltage of 13.5 V, subthreshold slope of 1.58 V/dec and an on/off current ratio of $2.45{\times}10^8$. The transistor was subsequently characterized in respect of visible light and UV illuminations in order to investigate its potential for possible use as a detector. The performance of the transistor is indicates a high-photosensitivity in the off-state with a ratio of photocurrent to dark current of $5.74{\times}10^2$. The obtained results reveal that the amorphous indium gallium zinc oxide thin film transistor can be used to fabricate UV photodetector operating in the 366 nm.

종이 기판을 이용한 유기박막 트랜지스터의 제작 (Polymer Thin-Film Transistors Fabricated on a Paper)

  • 김영훈;문대규;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.504-505
    • /
    • 2005
  • In this report, we demonstrate a high performance polymer thin-film transistor fabricated on a paper substrate. As a water barrier layer, parylene was coated on the paper substrate by using vacuum deposition process. Using poly (3-hexylthiophene) as an active layer, a polymer thin-film transistor with field-effect of up to 0.086 $cm^2/V{\cdot}s$ and on/off ratio of $10^4$ was achieved. The fabrication of polymer thin-film transistor built on a cheap paper substrate is expected to open a channel for future applications in flexible and disposable electronics with extremely low-cost.

  • PDF

쇼키컨텍에 의한 박막형 트랜지스터의 전기적 특성 (Electrical Characteristics of Thin Film Transistor According to the Schottky Contacts)

  • 오데레사
    • 한국재료학회지
    • /
    • 제24권3호
    • /
    • pp.135-139
    • /
    • 2014
  • To obtain the transistor with ambipolar transfer characteristics, IGZO/SiOC thin film transistor was prepared on SiOC with various polarities as a gate insulator. The interface between a channel and insulator showed the Ohmic and Schottky contacts in the bias field of -5V ~ +5V. These contact characteristics depended on the polarities of SiOC gate insulators. The transfer characteristics of TFTs were observed the Ohmic contact on SiOC with polarity, but Schottky contact on SiOC with low polarity. The IGZO/SiOC thin film transistor with a Schottky contact in a short range bias electric field exhibited ambipolar transfer characteristics, but that with Ohmic contact in a short range electric field showed unipolar characteristics by the trapping phenomenon due to the trapped ionized defect formation.

X-shaped Conjugated Organic Materials for High-mobility Thin Film Transistor

  • Choi, Dong-Hoon;Park, Chan-Eon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.310-311
    • /
    • 2009
  • New X-shaped crystalline molecules have been synthesized through various coupling reactions and their electronic properties were investigated. They exhibit good solubility in common organic solvents and good self-film forming properties. They are intrinsically crystalline as they exhibit well-defined X-ray diffraction patterns from uniform and preferred orientations of molecules. They also exhibited high field effect mobilities in thin film transistor (TFT) and good device performances.

  • PDF

Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films as Gate Dielectric for Organic Thin Film Transistor

  • Ao, Wei;Lim, Jae-Sung;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.836-841
    • /
    • 2011
  • Plasma polymerized methyl methacrylate (ppMMA) thin films were deposited by plasma polymerization technique with different plasma powers and subsequently thermally treated at temperatures of 60 to $150^{\circ}C$. To find a better ppMMA preparation technique for application to organic thin film transistor (OTFT) as dielectric layer, the chemical composition, surface morphology, and electrical properties of ppMMA were investigated. The effect of ppMMA thin-film preparation conditions on the resulting thin film properties were discussed, specifically O-H site content in the pMMA, dielectric constant, leakage current density, and hysteresis.

투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발 (Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors)

  • 권순열;정동건;최영찬;이재용;공성호
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.