• Title/Summary/Keyword: Three Dimensional Crack

Search Result 258, Processing Time 0.032 seconds

Mode Decomposition in Three Dimensional Cracks using Mutual Integrals

  • Kim, Young-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.14-23
    • /
    • 2000
  • A numerical scheme is proposed to obtain the individual stress intensity factors in an axisymmetric crack and in a three dimensional mixed mode crack. The method is based on the path independence of J and M integral and mutual or two-state conservation integral , which involves two elastic fields. Some numerical example are presented to investigate the effectiveness and applicability of the method for and axisymmetric crack and a three dimensional penny shaped crack problem under mixed mode.

  • PDF

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L.;Claro, G.K.S.;Rodrigues, E.A.;Lopes, J.A. Jr.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.261-283
    • /
    • 2013
  • This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

Mode Decomposition of Three-Dimensional Mixed-Mode Cracks using the Solution for Penny-Shaped Crack

  • Kim, Young-Jong;Cho, Duk-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 2001
  • A simple and convenient method of analysis for obtaining the individual stress intensity factors in a three-dimensional mixed mode crack is proposed. The procedures presented here are based on the path independence of J integral and mutual or two-state conservation integral, which involves two elastic fields. The problem is reduced to the determination of mixed mode stress intensity factor solutions in terms of conservation integrals involving known auxiliary solutions. Some numerical examples are presented to investigate the effectiveness and applicability of the method for a three-dimensional penny-shaped crack problem under mixed mode. This procedure is applicable to a three-dimensional mixed mode curved crack.

  • PDF

Three-dimensional crack analysis by fractional linear mapping (선형분수사상을 이용한 3차원 균열해석)

  • 안득만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-78
    • /
    • 1995
  • In this study the method of analysis for three-dimensional plane crack problem by fractional linear mapping is given. Using this method we can obtain the exact solutions of significantly different configurations of the crack. In the example image crack configurations by mapping of elliptic crack are illustrated. And the stress intensity factors along the image crack tips are calculated.

Analysis of Three Dimensional Crack Growth by Using the Symmetric Galerkin Boundary Element Method

  • Kim, Tae-Soon;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • In order to analyze general three dimensional cracks in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear is used. A crack is modelled as distribution of displacement discontinuities, and the governing equation is formulated as singularity-reduced integral equations. With the proposed method several example problems for three dimensional cracks in an infinite solid, as well as their growth under fatigue, are solved and the accuracy and efficiency of the method are demonstrated.

Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석)

  • Park, Jai-Hak;Park, Sang-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches (접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.39-48
    • /
    • 2012
  • This study deals with numerical determination of stress intensity factors of adhesively patch-repaired plates with cracks at V-shaped or semicircular notches. The p-convergent anisoparametric model are considered and then three-dimensional virtual crack closure technique is presented using formulations of anisoparametric elements. In assumed displacement fields of an element, strain-displacement relations and three-dimensional constitutive equations are derived with three-dimensional hierarchical shape functions expanded from one-dimensional Lobatto functions. Transfinite mapping technique is used to represent a circular boundary. The present model provides accuracy and simplicity in terms of stress concentration factor, stress distribution, the number of degrees of freedom, and non-dimensional stress intensity factor as compared with previous works in literatures. Stress intensity factors obtained by the three-dimensional virtual crack closure technique are estimated with respect to the variation of width of finite plate, radius of notch root, angular inclination of V-shaped notch, and crack length.

Fatigue Crack Growth Simulation of Arbitrarily Shaped Three Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 임의 형상의 삼차원 균열의 피로균열 성장 해석)

  • Park, Jai-Hak;Kim, Tae-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.15-20
    • /
    • 2006
  • The finite element alternating method is a convenient and efficient method to analyze three-dimensional cracks embedded in an infinite or a finite body because the method has the property that the uncracked body and cracks can be modeled independently. In this paper the method was applied for fatigue crack growth simulation. A surface crack in a cylinder was considered as an initial crack and the crack configurations and stress intensity factors during the crack growth were obtained. In this paper the finite element alternating method proposed by Nikishkov, Park and Atluri was used after modification. In the method, as the required solution for a crack in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear was used. And a crack was modeled as distribution of displacement discontinuities, and the governing equation was formulated as singularity-reduced integral equations.

Modeling and Analysis of Arbitrarily Shaped Three-Dimensional Cracks (임의 형태의 삼차원 균열 모델링 및 해석)

  • Park, Jai-Hak;Nikishkov, G.P.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1091-1097
    • /
    • 2011
  • The SGBEM-FEM alternating method has been known to be a very effective method for analyzing threedimensional cracks in a finite body. The accurate values of the stress intensity factor can be obtained for a general planar or nonplanar three-dimensional crack. In the existing method, eight-noded quadrilateral boundary elements are used to model a crack. In some cases, three-node triangle boundary elements are more convenient for the modeling of a crack with a general shape. In this study, a crack is modeled with three-noded triangular and seven-noded quadrilateral elements by using the advancing-front mesh generation method. The stress intensity factors are obtained for cracks with several shapes and the accuracy of results is examined.

Prediction of Liquation Crack Initiation at HAZ of Laser Weldment Based on Strain Analysis at Elevated Temperature

  • Yamamoto, Motomichi;Shinozaki, Kenji;Kitamura, Mitsuru;Shirai, Makoto
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.244-249
    • /
    • 2002
  • The purpose of this study is to develope the prediction method of liquation crack initiation in HAZ of laser weldment. Thermal two dimensional strain analyses were performed by FEM for bead-on-plate welding in order to obtain the plastic strain at elevated temperature in HAZ of the laser weldment. From these results, it became clear that the plastic strain at elevated temperature affected liquation crack initiation in HAZ, and it could be proposed that the critical strain, which controlled liquation crack initiation, existed. Moreover, an attempt was made to develop thermal and dynamic three dimensional strain analysis method for the laser weldment in order to obtain the plastic strain at elevated temperature in HAZ of the laser weldment in more detail and precisely.

  • PDF