• Title/Summary/Keyword: Three-dimensional heat transfer

Search Result 385, Processing Time 0.028 seconds

A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석)

  • Ahn, Dong-Gyu;Kim, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

An Experimental Study on the Pressure Drop and Heat Transfer Performance in Tubes with Three Dimensional Roughness (삼차원 조도관의 압력손실 및 열전달 성능에 대한 실험적 연구)

  • Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.276-286
    • /
    • 1995
  • In this study, pressure drop and heat transfer coefficients were measured in tubes with three dimensional roughness. Dimples were made by rotating the saw-tooth shaped finning disc on the outer tube surface. Resultant dimple shape was oval. Friction and heat transfer tests were performed with a range of roughness variables-roughness height 'e', axial roughness pitch 'p', circumferential roughness pitch 'z'. Within the test range, tube with e=0.5mm, z=5mm, p=3mm performed best. The efficiency ratio(rati of the heat transfer improvement and the pressure drop increase) of the tube approached 1.0 at low Reynolds number, and it was higher than that of the two-dimensional roughess tube of the same roughness height. Test data were predicted by 'discrete element method'. Results show that discrete element method underpredicts the friction data by 2% to 32%, and overpredicts the heat transfer data by-12% to 113%.

  • PDF

An Experimental Study on Pool Boiling Heat Transfer Enhancement of Structured Tubes Having Three-Dimensional Roughness (삼차원 조도를 가진 성형가공관의 R-134a 풀비등 열전달 촉진에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.195-201
    • /
    • 2016
  • Enhanced tubes are widely used in air-conditioning and process industries. Structural tubes having three-dimensional roughness are well known to be able to significantly enhance pool boiling heat transfer of refrigerants. In this study, five structural enhanced tubes having different fin density, fin height, and fin gap width were tested using R-134a. Results showed that the heat transfer coefficient was increased with increased fin density. Within test range, the effect of fin height on pool boiling heat transfer coefficient was insignificant. The heat transfer coefficients of the optimum configuration (2047 fpm, 0.21 mm gap width) tube were lower than those of other commercial enhanced tubes. This might be due to the larger fin gap width of the present enhanced tube.

Three Dimensional Heat Transfer Analysis of a Thermally Stratified Pipe Flow (열성층 배관 유동에 대한 3차원 열전달 해석)

  • Jo Jong Chull;Kim Byung Soon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.103-106
    • /
    • 2002
  • This paper presents an effective numerical method for analyzing three-dimensional unsteady conjugate heat transfer problems of a curved pipe subjected to infernally thermal stratification. In the present numerical analyses, the thermally stratified flows in the pipe are simulated using the standard $k-{\varepsilon}$turbulent model and the unsteady conjugate heat transfer is treated numerically with a simple and convenient numerical technique. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. Numerical calculations have been performed far the two cases of thermally stratified pipe flows where the surging directions are opposite each other i.e. In-surge and out-surge. The results show that the present numerical analysis method is effective to solve the unsteady flow and conjugate heat transfer in a curved pipe subjected to infernally thermal stratification.

  • PDF

HEAT-TRANSFER ANALYSIS OF A COOLING CHANNEL WITH INCLINED ELLIPTICAL DIMPLES (기울어진 타원형 딤플이 부착된 냉각 유로에 대한 열전달 성능해석)

  • Kim, H.M.;Moon, M.A.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with a parametric study on inclined elliptical dimples to enhance heat transfer in a channel. Three-dimensional Reynolds-averaged Naiver-Stokes equations are solved to estimate flow and heat transfer in dimpled channel. As turbulence closure, the low-Re shear stress transport model is employed. Two non-dimensional geometric variables, dimple ellipse diameter ratio and angle of main diameter to flow direction are selected for the parametric study. The inclined elliptical dimples show higher heat-transfer performance but with higher pressure drop compared to the circular dimples. And there is an optimum inclination angle that gives the maximum heat transfer.

Three-dimensional heat transfer analysis of laser cutting process for CSP 1N sheet using high power CW Nd:YAG laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단 공정의 3 차원 열전달 해석)

  • Kim M.S.;Ahn D.G.;Lee S.H.;Yoo Y.T.;Park H.J.;Shin H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.162-165
    • /
    • 2005
  • The objective of this research work is to investigate into the three-dimensional temperature distribution using quasi steady-state heat transfer analysis fur the case of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of the experiments, the optimal finite element model is obtained. Finally, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the optimal finite element model.

  • PDF

Three Dimensional Analysis for the Performance of the Corrugated Louver Fin for a Vehicle Heat Exchanger (차량용 열교환기의 주름진 루터 휜에 대한 3차원 성능해석)

  • 박봉수;조재헌;한창섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.116-126
    • /
    • 2002
  • A three dimensional numerical analysis of the corrugated louver fin for a vehicle heat exchanger was performed. The heat transfer rate and the air pressure drop of the corrugated louver fins for a slim heater were compared with experimental results at the same operating conditions. As for the slim heater fin, we found an optimum fin pitch at certain operating conditions. As the fin pitch increased, the air pressure drop decreased. The vertical or flat top fin was superior to the common declined fin in the aspect of heat transfer performance. As the louver length increased, both the heat transfer rate and the air pressure drop increased.

An experimental and numerical study on natural convection-radiation conjugate heat transfer in a three-dimensional enclosure having a protruding heat source (돌출 열원을 갖는 3차원 밀폐 공간내에서의 자연대류-복사 복합 열전달에 대한 실험적 및 수치적 연구)

  • Baek, Chang-In;Lee, Gwan-Su;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3344-3354
    • /
    • 1996
  • An experimental and numerical study on the three-dimensional natural convection-radiation conjugate heat transfer in the enclosure with heat generating chip has been performed. A 3-dimensional simulation model is developed by considering heat transfer phenomena by conduction-convection and radiation. Radiative transfer was analyzed with the discrete ordinates method. Experiments are conducted in order to validate the numerical model. Comparisons with the experimental data show that good agreement is obtained when the radiation effect is considered. The effects of the thermal conductivity of the substrate and power level on heat transfer are investigated. It is shown that radiation is the dominant heat transfer mode and the conductivity of the substrate has important effects on the heat transfer in the enclosure.

Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet (원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.