• Title/Summary/Keyword: Threshold Stress Intensity Factor

Search Result 87, Processing Time 0.041 seconds

An Experimental on the Evalution of Fatigue Crack Propagation of Carbon Steel (탄소강의 피로균열 진전거동 평가에 관한 실험적 연구)

  • 김희송;안병욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.938-946
    • /
    • 1989
  • Using the CT specimen of carbon steel(SM45C), we estimated the fatigue crack propagation behavior in stable crack propagation range. Furthermore the fatigue crack propagation rate, Acoustic Emission(AE) count rate, and fractography characteristics were also compared among others. The following results were confirmed by experimental observation. Near-threshold stress intensity factor range(.DELTA. $K_{th}$) is influenced by stress ratio but not at the upper limit of stable crack propagation range. As stress intensity factor range(.DELTA.K) and(or) stress amplitude increase (s), both crack propagation rate(da/dN) and AE count rate(dn/dN) increase. Effective stress intensity factor range(.DELTA. $K_{off}$) determined from the crack closure point measurement by AE method is useful for the evaluation of fatigue crack propagation rate. Fractography in stable crack propagation range showed striation, and agreed with the crack propagation rate obtained either by experiment of by the results of microscopic measurements.s.

Determination of the Threshold Stress Intensity Factor in Fatigue Crack Growth Test (피로균열성장시험에서 하한계 응력확대계수의 결정)

  • 허성필;석창성;양원호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2000
  • In fatigue crack growth test, it is important not only to analyze characteristics of fatigue crack growth but also to determine the threshold stress intensity factor, ${\Delta}K_{th}$. which is the threshold value of fatigue crack growth. Linear regression analysis using fatigue test data near the threshold is suggested to determine the ${\Delta}K_{th}$ in the standard test method but the ${\Delta}K_{th}$ can be affected by a fitting method. And there are some limitations on the linear regression analysis in the case of small number of test data near the threshold. The objective of this study is to investigate differences of the ${\Delta}K_{th}$ due to regression analysis method and to evaluate the relative error range of the ${\Delta}K_{th}$ in same fatigue crack growth test data.

  • PDF

The Effect of Fatigue Fracture in shot peening Marine structural steel at stress ratio (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • Park, Kyoung-Dong;Han, Kun-Mo;Jin, Young-Beom
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.138-144
    • /
    • 2003
  • Rencentely, the request for the light weight is more incresed in the area of industrial environment and machinery and consistent effort is needed to accomplish high strength of material for the direction of light weight. we got the following characteristic from crack growth test carried out in the range of stress ration of 0.1, 0.3 and 0.6 by means of opening mode displacement. At the content stress ratio, the threshold stress intensity factor crack range ${\Delta}K_{th}$in the early stage of fatigue crack growth (Region I) and dtress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. Fatigue life shows more improvement in the Shot-peened material than in the Un-peening material. And compressive residual stress of surface on the Shot peening processed operate resistance force of fatigue. So we can obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is depend on Paris equation. (2) Although the maxium compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maxium compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

An Evaluation on Corrosion Fatigue life of Spring Steel by Compressive Residual Stress (압축잔류응력을 부여한 스프링강의 부식피로 수명평가)

  • Park, Keyung-Dong;Ki, Woo-Tae;Sin, Yeong-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the influence of compressive residual stress and corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3+3%HF,\;6%FeCl_3$. The immersion period was performed for 90days. The fatigue characterization of a spring steel with processed shot peening were performed by considering the several corrosion environments in the range of stress ratio of 0.05 by means of opening mode displacement. By using the methods mentioned above, the following conclusions have been drawn: The fatigue life shows more improvement in the shot peened material than that in the un peened material. And the fatigue life shows improvement in ambient than in corrosion conditions. Threshold stress intensity factor range of the shot peened materials has higher than of the un peened materials. And the threshold stress intensity factor range was decreased in corrosion environments over ambient.

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

  • Alvarez Holston, Anna-Maria;Stjarnsater, Johan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.663-667
    • /
    • 2017
  • Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below $300^{\circ}C$. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor ($K_{IH}$) to initiate DHC as a function of temperature in Zry-4 for temperatures between $227^{\circ}C$ and $315^{\circ}C$. The experimental technique used in this study was the pin-loading testing technique. To determine the $K_{IH}$, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around $300^{\circ}C$, there was a sharp increase in $K_{IH}$ indicating the upper temperature limit for DHC. The value for $K_{IH}$ at $227^{\circ}C$ was determined to be $2.6{\pm}0.3MPa$ ${\surd}$m.

Fatigue Crack Growth Characteristics of $SiC_p/Al-Si$ Alloy Composites for Automotive Structures (자동차구조용 $SiC_p/Al-Si$복합재의 피로균열 진전특성에 대한 연구)

  • Koh Seungkee;Lee Haemoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.174-181
    • /
    • 2005
  • In order to investigate the behavior of fatigue crack growth of SiC-particulate- reinforced Al-Si alloy composites, fatigue tests using single edge notched tension(SENT) specimens were performed. Composite materials were manufactured by using both permanent die casting and extrusion processes with different volume fractions of $10\%\;and\;20\%$. $SiC_p-reinfurced$ Al-Si composites showed the increased levels of threshold stress intensity factor range, ${\Delta}K_{th}$, for the increased volume fractions of SiC particles, which implies the increased fatigue crack growth resistance at the threshold or low ${\Delta}K$ levels, compared to the unreinforced Al-Si alloy. In the Paris region, however, the composites showed the increased rate of crack growth resulting in the unfavorable effects on the fatigue crack growth resistance. Critical stress intensity factor range at unstable crack growth leading to final fracture decreased as the volume fraction of SiC particle increased, because of the reduced fracture toughness of the composites. Extruded materials showed higher threshold and critical values than the cast materials.

Comparison of Threshold Stress Intensity Factor and Fatigue Limit for Micro-crack of Offshore Structural Steel F690

  • Gu, Kyoung-Hee;Lee, Gum-Hwa;Lee, Weon-Gu;Oh, Chang-Seok;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.141-148
    • /
    • 2022
  • In this paper, the evaluation equations proposed by Tange et al. and Ando et al. were used to evaluate the threshold stress intensity factor ∆KRth(s) and fatigue limit ∆𝜎Rwc, according to the small crack of offshore structural steel F690. Despite the differences in concept and shape of the two equations, the ∆KRth(s) and ∆𝜎Rwc proved completely consistent. It is possible to use these equations to evaluate the dependence of the crack length on the ∆KRth(s) and ∆𝜎Rwc of structures made of all steel grades. With these equations, the characteristics of microcracks can be quantitatively evaluated, and the safety and reliability of the structure can be secured.

A study on stress corrosion cracking of weld zone in 304-stainless steel (304 스테인레스鋼 熔接部의 응력부식구열에 관한 硏究)

  • 김경일;강인찬
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.35-43
    • /
    • 1987
  • The effect of post weld heat treatment (P.W.H.T) on the propagation rate of stress corrosion cracking(S.C.C) and threshold stress intensity factor ($K_{IC}.c.c$) for stress corrosion cracking of 304 stainless steel has been investigated in boiling 45% $MgCl_2$ solutions with W.O.L specimens. Specimens were precracked by turning a pair of Cr-Mo steel bolts into a machined slot at the end of the specimen. The fracture surface was examined fractographically by Scanning Electron Microscope(S.E.M.)

  • PDF