• Title/Summary/Keyword: Thrust Ripple

Search Result 75, Processing Time 0.036 seconds

Design of Linear Synchronous Motor for Thrust Force Ripple Reduction using Module Phase Set Shift (Module Phase Set Shift를 이용한 선형 동기 전동기의 추력 리플 저감 설계)

  • Ryu, Gwang-Hyeon;Lee, Hyung-Woo;Cho, Su-Yeon;Oh, Se-Young;Ham, Sang-Hwan;Im, Jong-Bin;Ahn, Han-Woong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.848-849
    • /
    • 2011
  • Rotating machines are using gears to change the rotary motion into the linear motion, on the other hand, linear motors have a accurate position control and excellent dynamic characteristics because of generating a thrust force directly. But the important problem, one of the linear motor is a high thrust force ripple. Thrust force ripple has a bad effect on the position accuracy and the dynamic characteristics, so it is necessary to reduce the thrust force ripple. Cogging is one of the cause that affect thrust force ripple. Cogging has some connection with the GCD between pole pitch and teeth pitch It is proposed method to reduce a thrust ripple of the linear motor that chamfering, skew, and so on. In this paper, the module phase set shift(MPSS) is used to reduce a thrust force ripple that has a similar effect to skew. And propose a method that reduce a thrust force ripple more by use of chamfering.

  • PDF

Measurement and Analysis of Back-EMF and Thrust of a Linear Brushless DC Motor (선형 브러시리스 DC 모터의 역기전력과 추력 측정 및 분석)

  • 이춘호;김용일;현동석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.183-192
    • /
    • 1998
  • In this paper, we measure the back-EMF and the thrust of a linear brushless DC motor along the relative position between coils and magnets in various speed environments in order to obtain the back-EMF and the thrust as a function of a motor position. The measured back-EMF function and thrust function of the position differ from the analytical ones within 5%. The measured back-EMF and thrust function can, then, be employed in controlling the thrust ripple of the linear motor. Furthermore, to minimize the torque ripple of the linear motor, we suggest the design method to shape the back-EMF and thrust function of the linear motor.

  • PDF

Development of High Thrust Linear Motor for Machine Tool (공작기계용 고추력 리니어모터 개발)

  • 정재한;박재한;정시욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.363-368
    • /
    • 2004
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. The merits of linear motor are high speed, high acceleration and good positioning accurcy. In addition, Linear motor for high quality machine tool call for high thrust, high stiffness. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 10,000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust, thrust ripple by detent force and motor dynamics as well.

  • PDF

Development of High Thrust Linear Motor for Machine Tool (공작기계용 고추력 리니어모터 개발)

  • 정재한;박재완;박재한;정시욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.423-428
    • /
    • 2002
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. The merits of linear motor are high speed, high acceleration and good positioning accurcy. In addition, Linear motor for high quality machine tool call for high thrust, high stiffness. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 4,000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust, thrust ripple by detent force and motor dynamics as well.

  • PDF

Development of High Thrust Linear Motor for Machine Tool II (공작기계용 고출격 리니어모터 개발 II)

  • 정재한;박재한;정시욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.347-353
    • /
    • 2004
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. The merits of linear motor are high speed high acceleration and good positioning accuracy. In addiction, Linear motor for high qualify machine tool call for high thrust, high stiffness. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 1,900N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust ripple by detent force and motor dynamics as well.

  • PDF

Development of Iron Core type Linear Motor for Machine Tool(2) (공작기계용 철심형 리니어모터 기술개발(2))

  • 정재한;박재완;박재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.82-85
    • /
    • 2002
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 4, 000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust thrust ripple by detent farce and motor dynamics as well.

  • PDF

Development of Iron Core type Linear Motor for Machine Tool (공작기계용 철심형 니니어모터 기술개발)

  • 정재한;박재완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.33-36
    • /
    • 1997
  • The merits of linear motor are high speed, high acceleration and goad positioning accuracy. In addition, Linear motor for high quality machme tool call for high thrust, high stiffness. In using linear motor we also consider thrust ripple, detent force and thermal behavior. In this research, Iron core type single sided linear DC motor(LDM) is designed which thrust is 6,000 N. To accomplish this design, Various research is hlfilled l~ke the relation of thrust and permanent magnet position angle, the variation of detent force and thrust ripple, dynamic characteristics, and so on.

  • PDF

Optimal Design of Permanent Magnet Linear Synchronous Motor for Reducing Thrust Ripple (추력 리플 저감을 위한 PMLSM의 최적설계)

  • Kim S.I.;Hong J.P.;Cho H.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.265-268
    • /
    • 2005
  • This paper deals with the optimal design of a permanent magnet linear synchronous motor (PMLSM) with the analysis of prototype PMLSM. In the PMLSM, thrust ripple is one of the causes disturbing high-precision position control. Therefore, Response surface methodology (RSM), one of the optimization methods, is applied to obtain the shape decreasing thrust ripple of the prototype PMLSM. In the end, characteristic analysis of the PMLSM is performed by space harmonic method for shortening of a computation time, and final results is verified by finite element analysis.

  • PDF

Reducing the Thrust Ripple Generated by the Stacking of Stator Phase Windings of a Linear Pulse Motor (리니어 펄스모터의 고정자 상권선 적층에 따른 추력 리플 저감 기법 연구)

  • Choi, Jaehuyk;Zun, Chanyong;Mok, Hyungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.447-452
    • /
    • 2017
  • The stator phase winding of a linear pulse motor, which is a new type of linear motor, is comprised of two phases and is structurally characterized by a stacking method in which the winding of one phase is laid on top of the winding of another phase. Such a structural characteristic induces a difference in the flux linkage resulting from the flux of each stator phase winding in the same condition. The difference in the induced flux linkage acts as a kind of thrust ripple component in terms of the generated thrust. Thus, in order to maintain consistent thrust force, a method is required to solve the problem caused by the structural singularity. Hence, in this study, we present a technique for reducing the thrust force ripple generated by the stacking of the stator phase windings of a linear pulse motor through the generation of a compensating current reference value of the current controller in order to keep the torque constant. The proposed compensating algorithm is validated by simulations and experimental results.

Analysis of Electromagnetic Phenomena and Vibration of BLDC Motor by Permanent Magnet Overhang (영구자석 오버행에 의한 BLDC Motor의 전자기적 현상 및 진동특성 해석)

  • Kang, Gyu-Hong;Kim, Duck-Hyun;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.564-571
    • /
    • 2006
  • In this paper, the estimation of Z-axis thrust ripple and vibration of BLDC motor with asymmetrical permanent magnet overhang is performed by 3-D Finite Element Method (3-D FEM) and vibration experimentation. The ripple of Z-axis thrust is due to armature reaction field in BLDC motor driven to squire wave. That is generating to Z-axis vibration. The analysis results of Z-axis thrust and the vibration by Z-axis thrust ripple is validated by comparison with experimental result.