• Title, Summary, Keyword: Thylakoid membrane

Search Result 49, Processing Time 0.029 seconds

Ultrasturctural Study on Nectar Secretion from Extrafloral Nectary of Prunus yedoensis Matsumura (왕벚나무 화외밀선의 당액 분비에 관한 미세구조적 연구)

  • 정병갑
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.143-153
    • /
    • 1992
  • Nectar secretion from extrafloral nectary cells of Prunus yedoensis was examined by light and electron microscopy. Nectaries were composed of two or three layers of secretory cells and one layer of subsectretory cells. Vascular bundles in the petioles were connected to those of the subsectretory cell layer. Secretory cells had a number of mitochondria with poorly developed cristae. Plastids had little thylakoids and small vesicles, about 0.2 to 0.3 mm in diameter; however, no plastids had starch grains. Calcium oxalate crystals and plasmodesmata were frequently observed in the subsectretory and secretory cells, respectively. And nectar substances were observed in phloem of petiole, subsectretory, and secretory cells of the secretory gland. These results suggested that the nectar moved by symplastic transport through the plasmodesmata. On the other hand, the nectar droplets were observed in the secretory cell walls. in the cuticular layer just beyond of the former, and on the outer surface of the cuticular layer: such observations indicated that a apoplastic movement was involved in the final step of the nectar secretion. Cellular components related to the nectar transport, such as plasma membrane, cell wall and cuticle were not destroyed but intact: it was interpreted as a eccrine secretion.retion.

  • PDF

시금치 엽록체의 광합성 전자전달 활성에 미치는 $Cd^{2+}$의 저해 효과

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.37 no.2
    • /
    • pp.231-236
    • /
    • 1994
  • The effect of $Cd^{2+}$ on the electron transport rate of PSI and PSII was investigated in isolated spinach chloroplasts. In photosystem II, the rate of electron transport was decreased as the concentration of $Cd^{2+}$ was increased from 1 to $100\;\mu\textrm{M}$. The inhibitory effect of $Cd^{2+}$ was reduced when diphenylcarbazide was added to the reaction medium, indicating that $Cd^{2+}$ affects primarily psn oxygen evolving complexes of thylakoid membrane. The inhibitory effect of $Cd^{2+}$ was reduced when $Mn^{2+}\;and\;Ca^{2+}$ were added to the reaction medium, but the inhibitory effect was not fully relieved. Although the activity of psn was decreased significantly by the treatment of $50\;\mu\textrm{M}\;Cd^{2+}$, Fv/Fm was decreased slightly. However, the treatment of $100\;\mu\textrm{M}\;Cd^{2+}$ resulted in the marked decrease of Fv/Fm. In photosystem I, the rate of electron transport decreased as the concentration of $Cd^{2+}$ was increased from 0.2 to 3.2 mM. The inhibitory effect of $Cd^{2+}$ was decreased when the chloroplast treated with $Cd^{2+}$ was washed by centrifugation.gation.

  • PDF

UV-B-Induced Changes in Carbohydrate Content and Antioxidant Activity in Rice Seedling

  • Sung Jwa-Kyung;Lee Su-Yeon;Park So-Hyun;Jang Byoung-Choon;Lee Sang-Min;Lee Yong-Hwan;Choi Du-Hoi;Song Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.84-90
    • /
    • 2005
  • The effects of UV-B radiation on the seedling growth, carbohydrate metabolism and antioxidants activities of rice (Oryza sativa L.) were investigated under environmentally controlled chamber. Supplementary UV­B radiation reduced dry matter as well as leaf area, there­fore, relative growth rates (RGR) of seedlings were decreased by up to half compared to control. Photosynthetic products such as soluble sugars and starch were rapidly and significantly reduced by within 1 day of enhanced UV-B radiation due to the inhibition and degradation of photosynthetic processes and thylakoid membrane integrity. In our study, nonstructural carbohydrate levels were proved to be a main indicator on UV-B­induced stress. The behavior of SOD, CAT, APX and POD activities was monitored in the leaves of rice seedlings subjected to UV-B radiation. Under UV-B treatments, SOD activity was initially increased, whereas CAT and POD activities were slowly and slightly increased. However, APX activity showed no presumable results with an increase of UV-B dose. In leaves of rice seedlings, supplementary UV-B radiation caused an increase in free putrescine and spermidine, however spermine remained unaltered, although 24-hrs UV-B treatment slightly increased. This result presumes that an excess UV-B dose may induce ethylene biosynthesis (senescence) rather than polyamine biosynthesis (defense).

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Foliar ultrastructure of Korean Orostachys species (한국산(韓國産) 바위솔속(屬) 엽육조직(葉肉組織)의 미세구조(微細構造))

  • Kim, In-Sun;Pak, Jae-Hong;Seo, Bong-Bo;Song, Seung-Dal
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.52-61
    • /
    • 1995
  • Ultrastructural characteristics were examined with leaves of three species, O. japonicus A. Berger, O. malacophyllus Fisch., and O. sikokianus Owhi that probably have CAM mode. The mesophyll cells of these Orostachys possessed vacuoles with precipitates, myelin-like figures, and plasmalemmasomes, along with typical chloroplasts, microbodies and darkly stained bodies in their thin peripheral cytoplasm. Separation of the plasmalemma from the cell wall, leaving a space between them, was a common phenomenon in these species. A complex array of small to large vacuoles which contain small, membrane-bounded vesicles or vacuole-like structures were frequently found. A well-developed thylakoid system was observed in the chloroplasts and this indicates that the photosynthetic capacity of these mesophyll cells is probably active. A peculiar configuration of cytoplasm, especially around the chloroplasts, was also encountered. The variety of cytoplasmic constituents and vacuoles suggest the water-storing mesophyll cells may be complex in function. Some cellular features detected in this study strongly suggest the possible occurrence of CAM mode in Orostachys species.

  • PDF

Characterization of ent-Kaurenoic Acid 13-Hydroxylase in Steviol Biosynthesis of Stevia rebaudiana Bertoni (Stevia rebaudiana Bertoni의 Steviol 생합성 효소 ent-Kaurenoic Acid 13-Hydroxylase의 특성)

  • Shibata, Hitoshi;Kim, Keun-Ki
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.501-507
    • /
    • 1997
  • Chloroplasts isolated from Stevia rebaudiana Bertoni leaves contained an enzyme activity which catalyzed hydroxylation of ent-kaurenoic acid (ent-kaur-16-en-19-oic acid; ent-KA) to steviol (ent-13-hydroxy kaur-16-en-19-oic acid), the diterpenoid carboxylic alcohol which is the aglycone of sweet stevioside-related glycosides. $[^(14)C]-methylated$ ent-KA was used to localize ent-KA hydroxylase. $[^(14)C]-methyl-KA$ was most actively was transformed into methyl-steviol in chloroplast. The enzymatic activity was found in stroma fraction but not in thylakoid membrane in Stevia rebaudiana Bertoni. However, ent-KA 13-hydroxylase activity was not detected in stroma fraction of either Spinacia oleracea and Solidago altissima. The reaction products using $[^(14)C]-methyl-KA$ were purified and identified on TLC autoradiogram. The hydroxylation of ent-KA from stromal protein to form steviol required NADPH and oxygen. FAD and riboflavin stimulated the enzyme activity 1.5-and 1.7-fold, respectively. It also turned out that the activity of this enzyme using methyl-KA as a substrate was 16.7% that of ent-KA. The purified ent-KA 13-hydroxylase did not act on t-cinnamic acid, 4-hydroxyphenyl acetic acid, choline and resorcinol, known as monooxygenase and hydroxylase substrates.

  • PDF

Clone Identification of Cudraria Tricuspidata and Hibiscus Syriacus by Using PCR and Southern Hybridization (PCR과 Southern hybridization을 이용한 구지뽕나무와 무궁화의 클론감별)

  • Ryu, Jang-Bal;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.42-46
    • /
    • 1998
  • Polymerase chain reaction (PCR) and Southern hybridization analyses were carried out to identify clones of silk worm thorn (Cudraria tricuspidata) and Rose of sharon (Hibiscus syriacus) which look like one tree with two ar three, branches or two or three different trees. For PCR five different PCR primers $(17{\sim}24\;nucleotides)$ are derived from CaMV 35S promoter, nopaline synthase terminator and coding region of thylakoid membrane protein gene. In the case of silk worm thorn, about 500 bp of PCR product was produced from DNAs of one tree or branch in the presence of 35S primer alone. Southern hybridization analysis of genomic DNAs hybridized with $^{32}P$ labeled PCR product showed that the same size of DNA fragments were hybridized with different intensities. In addition, PCR analyses using 20 different primers of OPERON 10-mer kits showed that only OPA01 primer produced PCR products of different size. These results indicate that two different trees of silk worm thorn combined to one tree. In the case of the Rose of Sharon, the same size of PCR products were produced from three different samples but Southern hybridization with the above PCR product as a probe did not show any hybridized bands. PCR analyses in the presence of OPERON 10-mers showed OPA04 and OPA13 produced different products including same sizes of products. These, results indicate that three different trees of the Rose of Sharon seem to be derived from the tree.

  • PDF

Plastoglobule in chloroplast and its role in prenylquinone metabolism (엽록체 지질 소기관의 기능과 지질대사에서의 역할)

  • Kim, Hyun Uk;Kim, Eun-Ha;Lee, Kyeong-Ryeol;Jung, Su-Jin;Roh, Kyung Hee;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.125-134
    • /
    • 2013
  • Lipid droplets called plastoglobules are present in all plastid types. In chloroplasts, they are surrounded by the outer lipid monolayer from and connected to thylakoid membrane. The plastoglobule core contains the neutral lipids, which includes prenylquinones, triacylglycerols, and carotenoids. During stress and various developmental stages such as senescence, the size and number of plastoglobules increase due to the accumulation of lipids. Plastoglobules proteome revealed the presence of metabolic enzymes as well as structural proteins, plastoglobulins/fibrillins. Among the metabolic enzymes, the tocopherol cyclase, VTE1 and the NADPH quinine dehydrogenase, NDC1 have demonstrated that these participate in isoprenoid lipid metabolic pathways at the plastoglobule, notably in the metabolism of prenylquinones (tocopherol, plastoquinol and phylloquinone).

Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진)

  • Kim Soo-Youn;Choi Gang Guk;Park Youn Il;Park Young Mok;Yang Young Ki;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • Photoautotrophic bacteria are promising candidates for the production of poly(3-hydroxybutyrate) (PHB) since they can address the critical problem of substrate costs. In this study, we isolated 25 Tn5-inserted mutants of the Synechocystis sp. PCC 6803 which showed enhanced PHB accumulation compared to the wild-type strain. After 5-days cultivation under nitrogen-limited mixotrophic conditions, the intracellular levels of PHB content in these mutants reached up to $10-30\%$ of dry cell weight (DCW) comparable to $4\%$ of DCW in the wild-type strain. Using the method of inverse PCR, the affected genes of the mutants were mapped on the completely known genome sequence of Synechocystis sp. PCC 6803. As a result, the increased PHB accumulation in 5 mutants were found to be resulted from defects of genes coding for NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase, photosystem II PsbT protein or histidine kinase, which are involved in photosystem in thylakoid inner membrane of the cell. The values of $NAD(P)H/NAD(P)^+$ ratio in the cells of these mutants were much higher than that of the wild-type strain as measured by using pulse-amplitude modulated fluorometer, suggesting that PHB synthesis could be enhanced by increasing the level of cellular NAD(P)H which is a limiting substrate for NADPH-dependent acetoacetyl-CoA reductase. From these results, it is likely that NAD(P)H would be a limiting factor for PHB synthesis in Synechocystis sp. PCC 6803.