• Title/Summary/Keyword: Ti Diffusion barrier

Search Result 105, Processing Time 0.022 seconds

A Study on the Diffusion Barrier Properties of Pt/Ti and Ni/Ti for Cu Metallization (구리 확산에 대한 Pt/Ti 및 Ni/Ti 확산 방지막 특성에 관한 연구)

  • 장성근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • New Pt/Ti and hi/Ti double-metal structures have been investigated for the application of a diffusion barrier between Cu and Si in deep submicron integrated circuits. Pt/Ti and Ni/Ti were deposited using E-beam evaporator at room temperature. The performance of Pt/Ti and Ni/Ti structures as diffusion barrier against Cu diffusion was examined by charge pumping method, gate leakage current, junction leakage current, and SIMS(secondary ion mass spectroscopy). These evaluation indicated that Pt/Ti(200${\AA}$/100${\AA}$) film is a good barrier against Cu diffusion up to 450$^{\circ}C$.

Simultaneous Formation of NiSi Contact and Cu Plug/Ti Barrier (NiSi 접촉과 Cu 플러그/Ti 확산방지층의 동시 형성 연구)

  • Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.338-343
    • /
    • 2010
  • As an alternative to the W plug used in MOSFETs, a Cu plug with a NiSi contact using Ta / TaN as a diffusion barrier is currently being considered. Conventionally, Ni was first deposited and then NiSi was formed, followed by the barrier and Cu deposition. In this study, Ti was employed as a barrier material and simultaneous formation of the NiSi contact and Cu plug / Ti barrier was attempted. Cu(100 nm) / Ti / Ni(20 nm) with varying Ti thicknesses were deposited on a Si substrate and annealed at $4000^{\circ}C$ for 30 min. For comparison, Cu/Ti/NiSi thin films were also formed by the conventional method. Optical Microscopy (OM), Scanning Probe Microscopy (SPM), X-Ray Diffractometry (XRD), and Auger Electron Microscopy (AES) analysis were performed to characterize the inter-diffusion properties. For a Ti interlayer thicker than 50 nm, the NiSi formation was incomplete, although Cu diffusion was inhibited by the Ti barrier. For a Ti thickness of 20 nm and less, an almost stoichiometric NiSi contact along with the Cu plug and Ti barrier layers was formed. The results were comparable to that formed by the conventional method and showed that this alternative process has potential as a formation process for the Cu plug/Ti barrier/NiSi contact system.

Thermal Stability of TiN/Ti Barrier Metals with Al Overlayers and Si Substrates Modified under Different Annealing Histories (형성조건에 따른 TiN/Ti Barrier Metal의 Al 및 Si 과의 열적 안정성)

  • 신두식;오재응;유성룡;최진석;백수현;이상인;이정규;이종길
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.47-59
    • /
    • 1993
  • The thermal stability of "stuffed" TiN/Ti barrier matals with different annealing history has been studied to improve the contact reliability of Al/Si contacts in 16M DRAM. The annealing conditions before the Al deposition such as film thickness, the annealing temperature and the annealing ambient have been varied. For TiN(900A)/Ti(300A) annealed at 450 in nitrogen ambient to form a "stuffed barrier" by inducing oxygen atoms into grain boundaries, there is no observation of Al penetrations into Si substrates after the post heat treatment of up to 700 even though there are massive amounts of Al found in TiN film after the post heat treatment of 600 indicating that TiN has a "sponge-like" function due to its ability to absorb several amounts of aluminum at elevated temperature. The TiN/Ti diffusion barrier annealed at 550 has, however, failed after the post heat treatment at 600. The thinner diffusion barriers with TiN(300A)/Ti(100A) failed after the post heat treatment at 600.he post heat treatment at 600.

  • PDF

Optical Properties of $TiO_2/M/Ag/M/TiO_2$ Films with Different Diffusion Barrier Layers (확산방지막에 따른 $TiO_2/M/Ag/M/TiO_2$ 투명 열절연 박막의 광학적 성질)

  • 이경준;이진구;박주동;김진현;김영환;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.147-155
    • /
    • 1996
  • Optical properties of $TiO_2/M/Ag/M/TiO_2$ films have been changed with the diffusion barrier metal M. Optimum opticla properties of $TiO_2/M/Ag/M/TiO_2$ as the transparent heat mirror film, could be obtained with Ti among diffusion barrier metals of Ti, Cu, Zr and Al. $TiO_2/M/Ag/M/TiO_2$ film, which was fabricated by sputtering of 18 nm-thick $TiO_2$ and Ag, and 4nm-thick Ti, showed maximum transimittance of 89% at visible wavelength and infrared reflectance of 97% at wavelength of 3000 nm. Optical properties of this film was not degraded by Xenon-sunshine weather test for 240 hours. For specimens with barrier layers of Cu, Zr, and Al, degradation of optical properties by weather test was increased in a sequence of films with Cu, Zr, and Al barrier layers.

  • PDF

Effect of SC-1 Cleaning to Prevent Al Diffusion for Ti Schottky Barrier Diode (Ti 쇼트키 배리어 다이오드의 Al 확산 방지를 위한 SC-1 세정 효과)

  • Choi, Jinseok;Choi, Yeo Jin;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.97-100
    • /
    • 2021
  • We report the effect of Standard Clean-1 (SC-1) cleaning to remove residual Ti layers after silicidation to prevent Al diffusion into Si wafer for Ti Schottky barrier diodes (Ti-SBD). Regardless of SC-1 cleaning, the presence of oxygen atoms is confirmed by Auger electron spectroscopy (AES) depth profile analysis between Al and Ti-silicide layers. Al atoms at the interface of Ti-silicide and Si wafer are detected, when the SC-1 cleaning is not conducted after rapid thermal annealing. On the other hand, Al atoms are not found at the interface of Ti-SBD after executing SC-1 cleaning. Al diffusion into the interface between Ti-silicide and Si wafer may be caused by thermal stress at the Ti-silicide layer. The difference of the thermal expansion coefficients of Ti and Ti-silicide gives rise to thermal stress at the interface during the Al layer deposition and sintering processes. Although a longer sintering time is conducted for Ti-SBD, the Al atoms do not diffuse into the surface of the Si wafer. Therefore, the removal of the Ti layer by the SC-1 cleaning can prevent Al diffusion for Ti-SBD.

Effect of Stuffing of TiN on the Diffusion Barrier Property (II) : Cu/TiN/Si Structure (TiN의 충진처리가 확산방지막 특성에 미치는 영향(II) : Cu/TiN/Si 구조)

  • Park, Gi-Cheol;Kim, Gi-Beom
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.169-177
    • /
    • 1995
  • The diffusion barrier property of 100-nm-thick titanium nitride (TiN) film between Cu and Si was investigated using sheet resistance measurements, etch-pit observation, x-ray diffractometry, Auger electron spectroscopy, and transmission electron microscopy. The TiN barrier fails due to the formation of crystalline defects (dislocations) and precipitates (presumably Cu-silicides) in the Si substrate which result from the predominant in-diffusion of Cu through the TiN layer. In contrast with the case of Al, it is identified that the TiN barrier fails only the in-diffusion of Cu because there is no indication of Si pits in the Si substrate. In addition, it appears that the stuffing of TiN does not improve the diffusion barrier property in the Cu/TiN/Si structure. This indicates that in the case of Al, the chemical effect that impedes the diffusion of Al by the reaction of Al with $TiO_{2}$ which is present in the grain boundaries of TIN is very improtant. On the while, in the case of Cu, there is no chemical effect because Cu oxides, such as $Cu_{2}O$ or CuO, is thermodynamically unstable in comparison with $TiO_{2}$. For this reason, it is considered that the effect of stuffing of TiN on the diffusion barrier property is not significant in the Cu/ TiN/Si structure.

  • PDF

A Study on the Thermal Stability of Cu/Ti(Ta)/NiSi Contacts (Cu/Ti(Ta)/NiSi 접촉의 열적안정성에 관한 연구)

  • You, Jung-Joo;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.614-618
    • /
    • 2006
  • The thermal stability of Cu/Ti(or Ta)/NiSi contacts was investigated. Ti(Ta)-capping layers deposited to form NiSi was utilized as the Cu diffusion barrier. Ti(Ta)/NiSi contacts was thermally stable upto $600^{\circ}C$. However when Cu/Ti(Ta)/NiSi contacts were furnace-annealed at $300{\sim}400^{\circ}C$ for 40 min., the Cu diffusion was found to be effectively suppressed, but NiSi was dissociated and then Ni diffused into the Cu layer to form Cu-Ni solutions. On the other hand, the Ni diffusion did not occur for the Al/Ti/NiSi system. The thermal instability of Cu/Ti(Ta)/NiSi contacts was attributed to the high heat of solution of Ni in Cu.

Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices (메모리소자를 위한 Ti1-xAlxN 방지막의 산화 거동)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.718-723
    • /
    • 2002
  • $Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.

Diffusion barrier properties of MOCVD TiN thin film for AI planarization technology (AI planarization 기술에서 MOCVD TiN 박막의 barrier 특성)

  • 홍정의;김창렬;김준기;변정수;나관구;김우식
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.21-27
    • /
    • 1995
  • AI planarization 공정을 위한 barrier로서 CVD 및 PVD 방법에 의해 증착된 TiN 박막의 특성에 대하여 연구하였다. CVD TiN은 TDMAT source를 사용한 MOCVD방법으로 증착하였으며, PVD TiN은 1:1 aspect ratio(A/R)를 갖는 collimator를 사용한 reactive wputtering법으로 증착하였다. AES, SEM을 이용하여 CVD TiN과 PVD TiN의 조성을 분석하고 barrier 특성을 평가하였다. CVD TiN, PVD TiN 모두 400$\AA$의 두께와 RTA 처리에 의해서 AI planarization에 대한 양호한 barrier 특성을 확보할 수 있었다.

  • PDF

The Properties of Nitrogen Implanted Tungsten Diffusion Barrier for Cu Metallization

  • Kim, D.J.;Kim, D.J.;Kim, Y.T.;Lee, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.79-82
    • /
    • 1995
  • $N^+$ beam modified diffusion barriers have been proposed for Cu metallization . The crystalline phases of W and Ti thin films change from polycrytalline to amorphous phase by the N ion implantation of 1~$3\times 10^{17}$atoms/$\textrm{cm}^2$. The comparison between these amorphized diffusion barriers and the conventional W and TiN films shows that the amorphized W and Ti diffusion barriers are superior to the conventional w and TiN for protecting the Cu diffusion barriers are superior to the conventional W and TiN for protecting the Cu diffusion at the annealing temperature range $600^{\circ}C$~$800^{\circ}C$ for 30min. This is a worldwidely new and excellent result on the high temperature thermal stability of diffusion barrier.

  • PDF