• 제목/요약/키워드: Ti buffer layer

검색결과 128건 처리시간 0.02초

TiO2 완충층이 IGZO/TiO2 이중층 박막의 전기적, 광학적 성질에 미치는 영향 (Influence of TiO2 Buffer Layer on the Electrical and Optical Properties of IGZO/TiO2 Bi-layered Films)

  • 문현주;김대일
    • 열처리공학회지
    • /
    • 제28권6호
    • /
    • pp.291-295
    • /
    • 2015
  • IGZO single layer and $IGZO/TiO_2$ bi-layered films were deposited on glass substrate at room temperature with radio frequency magnetron sputtering to investigate the effect of $TiO_2$ buffer layer on the electrical and optical properties of the films. For all deposition, the thickness of IGZO and $TiO_2$ Buffer layer was kept at 100 and 5 nm, respectively. In a comparison of figure of merit, IGZO films with a 5-nm-thick $TiO_2$ buffer layer show the higher figure of merit ($8.40{\times}10^{-5}{\Omega}^{-1}$) than that of the IGZO single layer films ($6.23{\times}10^{-5}{\Omega}^{-1}$) due to the enhanced optical transmittance and the decreased sheet resistance of the films. The observed results mean that a 5 nm thick $TiO_2$ buffer layer in the $IGZO/TiO_2$ films results in better electrical and optical performance than conventional IGZO single layer films.

Effect of a TiO2 Buffer Layer on the Properties of ITO Films Prepared by RF Magnetron Sputtering

  • Kim, Daeil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.242-245
    • /
    • 2013
  • Sn-doped $In_2O_3$ (ITO) thin films were prepared by radio frequency magnetron sputtering without intentional substrate heating on bare glass and $TiO_2$-deposited glass substrates to investigate the effect of a $TiO_2$ buffer layer on the electrical and optical properties of ITO films. The thicknesses of $TiO_2$ and ITO films were kept constant at 5 and 100 nm, respectively. As-deposited ITO single layer films show an optical transmittance of 75.9%, while $ITO/TiO_2$ bi-layered films show a lower transmittance of 76.1%. However, as-deposited $ITO/TiO_2$ films show a lower resistivity ($9.87{\times}10^{-4}{\Omega}cm$) than that of ITO single layer films. In addition, the work function of the ITO film is affected by the $TiO_2$ buffer layer, with the $ITO/TiO_2$ films having a higher work-function (5.0 eV) than that of the ITO single layer films. The experimental results indicate that a 5-nm-thick $TiO_2$ buffer layer on the $ITO/TiO_2$ films results in better performance than conventional ITO single layer films.

D.C magnetron sputter법으로 증착된 TiAlN의 중간층에 따른 특성연구 (Characteristics of TiAlN Film on Different Buffer Layer by D.C Magnetron Sputter)

  • 김명호;이도재;이광민;김운섭;김민기;박범수;양국현
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.558-563
    • /
    • 2008
  • TiAlN films were deposited on WC-5Co substrates with different buffer layers by D.C. magnetron sputtering. The films were evaluated by microstructural observations and measuring of preferred orientation, hardness value, and adhesion force. As a process variable, various buffer layers were used such as TiAlN single layer, TiAlN/TiAl, TiAlN/TiN and TiAlN/CrN. TiAlN coating layer showed columnar structures which grew up at a right angle to the substrates. The thickness of the TiAlN coating layer was about $1.8{\mu}m$, which was formed for 200 minutes at $300^{\circ}$. XRD analysis showed that the preferred orientation of TiAlN layer with TiN buffer layer was (111) and (200), and the specimens of TiAlN/TiAl, TiAlN/CrN, TiAlN single layer have preferred orientation of (111), respectively. TiAlN single layer and TiAlN/TiAl showed good adhesion properties, showing an over 80N adhesion force, while TiAlN/TiN film showed approximately 13N and the TiAlN/CrN was the worst case, in which the layer was destroyed because of high internal residual stress. The value of micro vickers hardness of the TiAlN single layer, TiAlN/TiAl and TiAlN/TiN layers were 2711, 2548 and 2461 Hv, respectively.

고효율 실리콘 박막태양전지를 위한 신규 수소저감형 비정질실리콘 산화막 버퍼층 개발 (A Novel Hydrogen-reduced P-type Amorphous Silicon Oxide Buffer Layer for Highly Efficient Amorphous Silicon Thin Film Solar Cells)

  • 강동원
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1702-1705
    • /
    • 2016
  • We propose a novel hydrogen-reduced p-type amorphous silicon oxide buffer layer between $TiO_2$ antireflection layer and p-type silicon window layer of silicon thin film solar cells. This new buffer layer can protect underlying the $TiO_2$ by suppressing hydrogen plasma, which could be made by excluding $H_2$ gas introduction during plasma deposition. Amorphous silicon oxide thin film solar cells with employing the new buffer layer exhibited better conversion efficiency (8.10 %) compared with the standard cell (7.88 %) without the buffer layer. This new buffer layer can be processed in the same p-chamber with in-situ mode before depositing main p-type amorphous silicon oxide window layer. Comparing with state-of-the-art buffer layer of AZO/p-nc-SiOx:H, our new buffer layer can be processed with cost-effective, much simple process based on similar device performances.

TiO2 Buffer Layer의 후열처리 온도 증가에 따른 PLZT 박막의 유전특성에 대한 연구 (The Dielectric Properties of PLZT Thin Films as Post Annealing Temperatures of TiO2 Buffer Layer)

  • 윤지언;이인석;김상지;손영국
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.560-565
    • /
    • 2008
  • 본 연구에서는 PLZT 박막이 $(Pb_{0.92}La_{0.08})(Zr_{0.65}Ti_{0.35})O_3$ 조성의 타겟을 이용한 R.F. 마그네트론 스퍼터링공정에 의해 실리콘 웨이퍼 위에 증착되었다. PLZT 박막의 강유전특성을 향상시키기 위해 buffer layer인 $TiO_2$ 층이 사용되었으며, buffer layer의 후열처리온도 변화에 따른 PLZT 박막의 결정성과 유전특성이 연구되었다. buffer layer이 삽입되지 않은 PLZT 박막의 잔류분극값은 $19.13{\mu}C/cm^2$ 이었으며, 반면 $TiO_2$ buffer layer을 삽인한 후 후열처리 온도를 $600^{\circ}C$로 증가시킨 PLZT 박막의 잔류분극값은 $146.62{\mu}C/cm^2$까지 크게 증가하였다. 하부전극 백금(Pt)과 PLZT 박막층 사이에 삽입된 $TiO_2$ buffer layer의 특성과 PLZT 박막의 유전특성에 미치는 영향을 살펴보기 위해 글로우 방전 분광법 (glow discharge spectroscopy, GDS)이 PLZT 박막(PLZT/($TiO_2$)/Pt/Ti/$SiO_2$/Si wafer)에 대해 수행 되었다.

Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향 (Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer)

  • 장희석;박상환;권혁보;최성철
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

TiCN 및 TiN/TiCN 박막의 구조와 피로거동 (Structure & Fatigue Behavior of TiCN and TiN/TiCN Thin Films)

  • 백창현;홍주화;위명용;강희재
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.324-329
    • /
    • 2000
  • Microstructure, mechanical and fatigue behaviors of TiCN and TiN/TiCN thin films, deposited on quenched and tempered STD61 tool steel, were investigated by using XRD, XPS, hardness, adhesion and fatigue tests. The TiCN thin film is grown along the (100), (111) orientation, whereas the TiN/TiCN thin film is grown along the (111) orientation. The preferred orientation of TiN/TiCN thin film strongly depends on the TiN buffer layer whose orientation is (111), as is well-known. The TiN/TiCN thin film showed the higher adhesion compared with TiCN single layer because the TiN buffer layer, having good toughness, reduces the effects of the lower hardness of substrate. In the high cycle tension-tension fatigue test, the fatigue life of the TiCN and the TiN/TiCN coated steel increased approximately two to four times and five to nine times respectively compared with uncoated specimens. The TiN buffer layer in multilayer thin films plays an important role in reducing residual stress and fatigue crack initiation, and then in restraining the fatigue propagation.

  • PDF

$CeO_2$/$BaTiO_3$이중완충막을 이용한 YBCO 박막 제작 (Fabrication of YBCO Superconducting Film with $CeO_2$/$BaTiO_3$Double Buffer Layer)

  • 김성민;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.959-962
    • /
    • 2000
  • We have fabricated good quality superconducting YBa$_2$Cu$_3$$O_{7-x}$(YBCO) thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrates with CeO$_2$and BaTiO$_3$buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. YBCO film with CeO$_2$single buffer layer shows T$_{c}$ of 71.64 K and the grain size less than 0.1${\mu}{\textrm}{m}$. When BaTiO$_3$ is used as a single buffer layer, the grain size of YBCO is observed to be larger than that of YBCO/CeO$_2$by 200 times and the transition temperature of the film is enhanced to be about 84 K. CeO$_2$/BaTiO$_3$double buffer layer has been adopted to enhance the superconducting properties, which results in the enhancement of the critical temperature and the critical current density to be about 85 K and 8.4$\times$10$^4$ A/$\textrm{cm}^2$ at 77 K, respectively mainly due to the enlargement of the grain size of YBCO film.ilm.

  • PDF

MgO 완충층을 이용한 Si 기판상 강유전체 $BaTiO_3$ 박막의 제조 (Preparation of Ferroelectric $BaTiO_3$ Thin Films on MgO-Buffered Si Substrates)

  • 김상섭
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.373-379
    • /
    • 1997
  • A study on the deposition and characterization of BaTiO3 thin films on MgO-buffered Si(100) substrates by sputtering was conducted. The MgO buffer layers were investigated as a function of deposition temperature. At lower substrate temperature, the MgO layers were not fully crystalline, but a crystallized MgO layer with (001) preferred orientation was obtained at the substrate temperature of $700^{\circ}C$. Partially (00ι) or (h00) textured BaTiO3 films were obtained on Si(100) with the MgO buffer layer grown at 700ι. While, randomly oriented BaTiO3 films with large-scale cracks on the surface were made without the MgO layer. The crystallographic orientation, morphology and electrical properties between the BaTiO3 films on Si with and without the MgO layer were compared using the BaTiO3 film on MgO(100) single crystal substrate as a reference system. Also the favorable role of the MgO layer as a buffer for growing of oriented BaTiO3 films on Si substrates was confirmed.

  • PDF