• Title/Summary/Keyword: Ti-Si-C-N

Search Result 419, Processing Time 0.023 seconds

Phase Equilibria and Reaction Paths in the System Si3N4-SiC-TiCxN1-x-C-N

  • H.J.Seifert
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.18-35
    • /
    • 1999
  • Phase equilibria in the system Si3N4-TiC-TiCxN1-x-C-N were determined by thermodynamic calculations (CALPHAD-method). The reaction peaction paths for Si3N4-TiC and SiC-TiC composites in the Ti-Si-C-n system were simulated at I bar N2-pressure and varying terpreatures. At a temperature of 1923 K two tie-triangles (TiC0.34N0.66+SiC+C and TiC0.13N0.87+SiC+Si3N4) and two 2-phase fieds (TiCxN1-x+SiC; 0.13

Microstructure and Mechanical Properties of Ti-Si-C-N Coatings Synthesized by Plasma-Enhanced Chemical Vapor Deposition (PECVD 로 합성된 Ti-Si-C-N 코팅막의 미세구조 및 기계적 성질)

  • Hong, Yeong-Su;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.83-85
    • /
    • 2008
  • 4성분계 Ti-Si-C-N 코팅막은 $TiCl_4$, $SiH_4$, $CH_4$, Ar, 그리고 $N_2$ 가스 혼합체를 이용하여 RF-PECVD 기법에 의해 Si 와 AISI 304 기판위에 합성하였다. Ti-C-(0.6)-N(0.4) 조성의 코팅막에 Si를 첨가함으로 Ti(C,N) 결정질은 줄어들고, Si3N4 및 SiC 비정질상이 나타났다. Ti-Si(9.2 at.%)-C-N의 조성에서 나노 크기의 nc-Ti(C,N) 결정질을 비정질 a-Si3N4/SiC가 둘러싸고 있는 형태의 나노 복합체를 나타내었다. 경도 24 Gpa의 Ti-C-N 코팅막은 Si를 첨가함으로 Ti-Si(9.2 at.%)-C-N 조성에서 46 Gpa의 최고 경도를 나타내었으며, 마찰계수의 경우에도 Ti-C-N 코팅막에 Si를 첨가함으로 크게 낮아졌다.

  • PDF

Mechanical evaluation of superhard Ti-Si-C-N coatings prepared by a hybrid coating system (하이브리드 코팅 시스템으로 제조된 초고경도 Ti-Si-C-N 코팅막의 기계적 특성 평가)

  • Kang S. H.;Kang M. C.;Kim K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.178-181
    • /
    • 2005
  • Quaternary Ti-Si-C-N coatings were deposited on WC-Co substrates by a hybrid coating system of arc ion plating (AIP) and sputtering techniques using Ti and Si targets, in an $Ar/N_2/CH_4$ gaseous mixture. The crystallinity, bending status, and microstructure of the Ti-Si-C-N coatings were measured by X-ray diffractometer (XRD) and X-ray photoelectron spectroscope (XPS), The micro-hardness of Ti(C,N) and Ti-Si-N coatings were about 30 and 40 GPa, respectively. As the Si was incorporated into Ti(C,N) coatings, the Ti-Si-C-N coatings having Si content of $8.9\;at.\%$ showed the maximum hardness value of about 55 GPa. In this work, the microstructure and mechanical properties of Ti-Si-C-N coatings were systematically investigated.

  • PDF

A Study on the Properties of TiN/${TiSi}_{2}$ Bilayer by a Rapid Thermal Anneal in ${NH}_{3}$ Ambient (${NH}_{3}$ 분위기에서 급속열처리에 의한 TiN/${TiSi}_{2}$ 이중구조막의 특성에 대한 고찰)

  • 이철진;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.869-874
    • /
    • 1992
  • The physical and electrical properties of TiN/TiSiS12T bilayer were studied. The TiN/TiSiS12T bilayer was formed by rapid thermal anneal in NHS13T ambient after the Ti film was deposited on silicon substrate. The Ti film reacts with NHS13T gas to make a TiN layer at the surface and reacts with silicon to make a TiSiS12T layer at the interface respectively. It was found that the formation of TiN/TiSiS12T bilayer depends on RTA temperature. In this experiment, competitive reaction for TiN/TiSiS12T bilayer occured above $600^{\circ}C$. Ti-rich TiNS1xT layer and Ti-rich TiSiS1xT layer and Ti-rich TiSiS1xT layer were formed at $600^{\circ}C$. stable structure TiN layer TiSiS12T layer which has CS149T phase and CS154T phase were formed at $700^{\circ}C$. Both stable TiN layer and CS154T phase TiSiS12T layer were formed at 80$0^{\circ}C$. The thickness of TiN/TiSiS12T bilayer was increased as the thickness of deposited Ti film increased.

  • PDF

High Temperature Oxidation of TiN, Ti(C,N), TiAlSiN, TiZrAlN, TiAlCrSiN Thin Films (TiN, Ti(C,N), TiAlSiN, TiZrAlN, TiAlCrSiN 박막의 고온산화)

  • Kim, Min-Jeong;Park, Sun-Yong;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.192-192
    • /
    • 2014
  • TiN, Ti(C,N), TiAlSiN, TiZrAlN, TiAlCrSiN 박막을 제조한 후, 이 들의 고온산화 특성을 SEM, EPMA, TGA, TEM, AES 등을 이용하여 조사하고, 산화기구를 제안하였다. 산화속도, 생성되는 산화물의 종류와 분포는 박막의 조성, 산화온도, 산화시간에 따라 변하였다.

  • PDF

Characteristics of $TiN/TiSi_2$ Contact Barrier Layer by Rapid Thermal Anneal in $N_2$ Ambient (질소 분위기에서 순간역처리에 의해 형성시킨 $TiN/TiSi_2$ Contact Bsrrier Lauer의 특성)

  • 이철진;허윤종;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.633-639
    • /
    • 1992
  • The physical and electrical properties of TiN/TiSiS12T contact barrier were studied. The TiN/TiSiS12T system was formed by rapid thermal anneal in NS12T ambient after the Ti film was deposited on silicon substrate. The Ti film reacts with NS12T gas to make a TiN layer at the surface and reacts with silicon to make a TiSiS12T layer at the interface respectively. It was found that the formation of TiN/TiSiS12T system depends on RTA temperature. In this experiment, competitive reaction for TiN/TiSiS12T system occured above $600^{\circ}C$. Ti-rich TiNS1xT layer and Ti-rich TiSiS1xT layer were formed at $600^{\circ}C$. stable structure TiN layer and TiSiS1xT layer which has CS149T phase and CS154T phase were formed at $700^{\circ}C$. Both stable TiN layer and CS154T phase TiSiS12T layer were formed at 80$0^{\circ}C$. The thickness of TiN/TiSiS12T system was increased as the thickness of deposited Ti film increased.

  • PDF

Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings (Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구)

  • Hong, Young-Su;Kwon, Se-Hun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.

Wear Characteristics of Coated $Si_3N_4$-TiC Ceramic Tool (Coated $Si_3N_4$-TiC Ceramic 공구의 마모 특성)

  • 김동원;권오관;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 1988
  • Titanium carbide(TiC), Titanium nitride(TiN), and Titanium carbonnitride(Ti(C,N)) films were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$, $TiCl_4-N_2-H_2$, and $TiCl_4-CH_4-N_2-H_2$ gas mixtures, respectively. The experimental results indicate that TiC coatings compared with TiN coatings on $Si_3N_4$ -TiC ceramic have an improved microstructural property, good thermal shock resistance, and good interfacial bonding. However TiN coatings compared with TiC coatings have a low friction coefficient with steel and good chemical stability. It is found by cutting test that coated insert compared with $Si_3N_4$-TiC ceramic have a superior flank and crater wear resistance. And multilayer coating compared with monolayer coating shows a improved wear resistance.

A Study on the Chemically Vapor Deposited TiC, TiN, and TiC(C, N) on $Si_3N_4$-TiC Ceramic Tools. ($Si_3N_4-TiC$ Ceramic 공구에 화학증착된 TiC, TiN 및 Ti(C, N)에 관한 연구)

  • 김동원;김시범;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.36-43
    • /
    • 1988
  • Titanium carbide(TiC) and titanium nitride(TiN) flims were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$ and $TiCl_4-H_2-N_2$ gas mixtures, respectively. The nonmetal to metal ratio of deposit increases with increasing $m_{C/Ti}$(mole ratio of CH$_4$ to TiCl$_4$ in the input) for TiC coatings and $m_{N/Ti}$(mole ratio of N$_2$ to TiCl$_4$ in the input) for TiN coatings. The nearly stoiahiometric films could be obtained under the deposition condition of $m_{C/Ti}$ between 1.15 and 1.61 for TiC, and that of $m_{N/Ti}$ between 25 and 28 for TiN. Also maximum microhardness of the coatings can be obtained in these ranges. The interfacial region of TiC coatings on $Si_3N_4$-TiC ceramics is wider than that of TiN coatings according to Auger depth profile analysis, which indicates good interfacial bonding for TiC. Experimental results show that TiC coatings have an randomly equiaxed structure and Columnar structure with(220) preferred orientation can be obtained for TiN coatings. And, multilayer coatings have a dense and equiaxed structure.

Formation of $TiN/TiSi_2$-bilayer by PVD method (PVD 방법에 의한 $TiN/TiSi_2$-bilayer 형성)

  • Choe, Chi-Gyu;Gang, Min-Seong;Kim, Deok-Su;Lee, Gwang-Man;Hwang, Chan-Yong;Seo, Gyeong-Su;Lee, Jeong-Yong;Kim, Geon-Ho
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1182-1189
    • /
    • 1998
  • High quality $TiN/TiSi_2$-bilayers were formed on the Si(100) substrate at room temperature and at $600^{\circ}C$ first by coevaporation of stoichiometric Si and Ti(Si:Ti = 2:1) fellowed by Ti reactive deposition in N, gas ambient, and in situ annealing in ultrahigh vacuum. Stoichiometric $Ti_{0.}N_{0.5}$, films with (111) texture and $C54-TiSi_2$ films were grown by annealing at temperatures above $700^{\circ}C$. $TiN/C54-TiSi_2$/Si(100) interface was clear and flat without agglomoration, and $CS4-TiSi_2$ film was epitxailly grown. The sheet resistance of the $TiN/TiSi_2$- bilayer decreased as the annealing temperature increased and about $2.5\omega/\textrm{cm}^2$ was obtained from the sample annealed over $700^{\circ}C$.

  • PDF