• Title/Summary/Keyword: Ti-mesh

Search Result 75, Processing Time 0.03 seconds

Synthesis of Dye-sensitized Solar Cells with Titanium Mesh Electrode (티타늄 메쉬 전극구조를 이용한 염료 태양전지 제작)

  • Paeng, Sung-Hwan;Kim, Doo-Hwan;Park, Min-Woo;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2436-2440
    • /
    • 2009
  • In this work, TCO-less dye-sensitized solar cells (DSCs) using Ti-mesh layer is fabricated for high-efficient low-cost solar cell application. The Ti-mesh metal can replace TCO in the photo-electrode part of DSCs, thus the cell structure is composed of a glass/dye sensitized TiO2 particle/ Ti-mesh layer/electrolyte/Pt sputtered counter electrode/ glass. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3^-$ through the mesh hole. Thin Ti-mesh ($\sim40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. The efficiency of prepared TCO-less DSCs sample is about 1.45 % ((ff: 0.5, Voc: 0.52V, Jsc: 5.55 $mA/cm^2$).

Direct Growth of TiO2-Nanotubes on Ti-Mesh Substrate for Photoanode Application to Dye-sensitized Solar Cell

  • Park, Min-Woo;Lee, Dong-Hoon;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.14-19
    • /
    • 2010
  • Partial anodic oxidation of Ti-mesh with a wire diameter of ~200[${\mu}m$] produces self-aligned $TiO_2$ nanotube arrays (~50[${\mu}m$] in length) on Ti-mesh substrate. The electrolyte used for anodic oxidation was an ethylene glycol solution with an addition of 1.5 vol. % $H_2O$ and 0.2 wt. % $NH_4F$. A dye-sensitized solar cell utilizing the photoanode structure of $TiO_2$-nanotube/Ti-mesh was fabricated without a transparent conducting oxide (TCO) layer, in which Ti-mesh replaced the role of TCO. The 1.93[%] photoconversion efficiency was low, which can be attributed to both insufficient dye molecules attachment and limited electrolyte flow to dye molecules. The optimized nanotube diameter and length as well as the $TiCl_4$ treatment can improve cell performance.

Synthesis of TCO-Iess Dye Sensitized Solar Cell (TCO-Iess 구조 염료 태양전지의 제작과 광전변환 특성)

  • Heo, Jong-Hyun;Park, Sun-Hee;Kwak, Dong-Joo;Sung, YouI-Moon;Song, Jae-Eun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.251-254
    • /
    • 2009
  • A new type of dye-sensitized solar cells(DSCs) based on Ti-mesh electrode without using TCO layer is fabricated for high-efficient and low-cost solar cell application. The TCO-Iess DSCs sample is composed of a [glass/ dye sensitized $TiO_2$ layer/ Ti-mesh electrode/ electrolyte/ metal counter electrode]. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3{^-}$ through the mesh hole. Thin Ti-mesh (${\sim}40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. Electrical performance of as-fabricated DSCs is presented and discussed in detail.

  • PDF

Synthesis of TCO-less Dye Sensitized Solar Cells (TCO-less 염료태양전지 제작)

  • Heo, Jong-Hyun;Kwak, Dong-Joo;Sung, Youl-Moon;Kim, Tae-Heung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1074_1075
    • /
    • 2009
  • A new type of dye-sensitized solar cells(DSCs) based on Ti-mesh electrode without using TCO layer is fabricated for high-efficient low-cost solar cell application. The TCO-less DSCs sample is composed of a [glass/ dye sensitized $TiO_2$ layer/ Ti-mesh electrode/ electrolyte/ metal counter electrode]. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3^-$ through the mesh hole. Thin Ti-mesh ($\sim40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. Electrical performance of as-fabricated DSCs is presented and discussed in detail.

  • PDF

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.

Enhanced photocatalytic Cr(VI) reduction using immobilized nanotubular TiO2 on Ti substrates and flat type photoreactor (티타늄 금속지지체에 고정화된 나노튜브 광촉매와 평판형 광반응기를 이용한 Cr(VI) 환원처리 효율 향상 연구)

  • Kim, Youngji;Joo, Hyunku;Yoon, Jaekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • In this study, flat-type photocatalytic reaction system is applied to reduce toxic hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in aqueous solution under UV irradiation. To overcome the limitation of conventional photocatalysis, a novel approach toward photocatalytic system for reduction of hexavalent chromium including nanotubular $TiO_2$ (NTT) on two kinds of titanium substrates (foil and mesh) were established. In addition, modified Ti substrates were prepared by bending treatment to increase reaction efficiency of Cr(VI) in the flat-type photocatalytic reactor. For the fabrication of NTT on Ti substrates, Ti foil and mesh was anodized with mixed electrolytes ($NH_4F-H_2O-C_2H_6O_2$) and then annealed in ambient oxygen. The prepared NTT arrays were uniformly grown on two Ti substrates and surface property measurements were performed through SEM and XRD. Hydraulic retention time(HRT) and substrate type were significantly affected the Cr(VI) reduction. Hence, the photocatalytic Cr(VI) reduction was observed to be highest up to 95% at bended(modified) Ti mesh and lowest HRT. Especially, Ti mesh was more effective as NTT substrate in this research.

Enhanced Electrochemical Properties of Dye-sensitized Solar Cells Using Flexible Stainless Steel Mesh Electrodes with Ti Protective Layer (Ti 보호층이 형성된 스테인레스 스틸 메쉬 전극을 이용한 염료감응형 태양전지의 전기 화학적 특성 개선)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.180-184
    • /
    • 2015
  • Stainless steel (SS) mesh was used to fabricate photoelectrode for flexible dye-seisitzed solar cells (DSSCs) in order to evaluate them as replacements for more expensive transparent conductive oxide(TCO). We fabricated the DSSCs with new type of photoelectrode, which consisted of flexible SS mesh coated with 100 nm thickness titanium (Ti) protective layer deposited using electron-beam deposition system. SS mesh DSSCs with protective layer showed higher efficiency than those without a protective layer. The best cell property in the present study showed the open circuit voltage (Voc) of 0.608 V, short-circuit current density (Jsc) of $5.73mA\;cm^{-2}$, fill factor (FF) of 65.13%, and efficiency (${\eta}$) of 2.44%. Compared with SS mesh based on DSSCs (1.66%), solar conversion of SS mesh based on DSSCs with protective layer improved about 47%.

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Efficiency Improvement of Metal-Mesh Electrode Type Photoelectrochemical Cells by Oxides Layer Coatings (산화물박막 증착에 의한 금속 메쉬전극 구조 광전기화학셀의 효율 개선에 관한 연구)

  • Han, Chi-Hwan;Park, Seon-Hee;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.584-587
    • /
    • 2011
  • In this work, the $TiO_2$ and $SnO_2$ thin films as blocking layers were coated directly onto the metal-mesh electrode surface to prevent unnecessary inflow of back-transfer electrons from the electrolyte ($I^-/I_3^-$) to the metal-mesh electrode. The DSCs were fabricated with working electrode of SUS mesh coated with blocking $TiO_2$ and $SnO_2$ layers, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited F:$SnO_2$. From the experimental result, it was ascertained that the efficiency of metal electrode coated with $TiO_2$ by Dip-coating was superior to that of metal electrode coated with $SnO_2$ by Dip-coating and screen printing with the results of experiments. The photo-current conversion efficiency of the cell obtained from optimum fabrication condition was 3% ($V_{oc}$=0.61V, $J_{sc}$=11.64 mA/$cm^2$, ff=0.64) under AM1.5, 100 mW/$cm^2$ illumination.