• Title/Summary/Keyword: Tillage characteristics

Search Result 69, Processing Time 0.03 seconds

Tillage Characteristics Estimation of Crank-type and Rotary-type Rotavators by Motion Analysis of Tillage Blades

  • Nam, Ju-Seok;Kim, Dae-Chun;Kim, Myoung-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.279-286
    • /
    • 2012
  • Purpose: This study has been conducted to investigate the applicability of motion analysis of tillage blade for estimation of tillage characteristics of crank-type and rotary-type rotavators. Methods: The interrelation between tillage traces from motion analysis and field test results including rotavating depth, pulverizing ratio and inversion ratio at the same work conditions were analyzed for both crank-type and rotary-type rotavators. The work conditions include working speed of prime mover tractor and PTO speed of rotavators. For the motion analysis, joint conditions of main connecting component were specified considering the actual working mechanism of rotavator. Results: There were important correlations for the trend between motion analysis and field test results. Conclusions: Although further study is needed for applying motion analysis to estimate the accurate tillage related parameters such as rotavating depth, the soil pulverizing ratio and inversion ratio, it could be used to compare the tillage characteristics of various rotavators quickly and simply.

Consumed-Power and Load Characteristics of a Tillage Operation in an Upland Field in Republic of Korea

  • Kim, Jeong-Gil;Kim, Young-Joo;Kim, Jung-Hun;Shin, Beom-Soo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.83-93
    • /
    • 2018
  • Purpose: This study derived the consumed power and load characteristics of a tillage operation performed in an upland field located in Seomyeon, Chuncheon, Rep. Korea, where potatoes and cabbages were cultivated in two crops. Methods: A plow and rotavator were mounted on a tractor with 23.7 kW of rated power to perform the tillage operation. The work conditions were determined, considering the actual working speed of the tillage operation performed by the local farmers. The power consumption of the rear axle, engine, and power take-off (PTO), PTO torque, and tractive force were measured under each work condition. The consumed power and load characteristics were analyzed using their average values. Results: The rotary-tillage operation consumed more engine power than the plow operation for the same tractor-transmission gear condition. The PTO in the rotary-tillage operation and the rear axle in the plow operation consumed the most power. The power consumption of the engine and the PTO for the rotary-tillage operation tended to increase as the transmission gears of the tractor and the PTO became higher. In contrast, the rear-axle power consumption was insignificant. In addition, the PTO torque tended to rise as the tilling pitch increased. For the plow operation, the drawbar power and the rear axle power accounted for 68-90% of the engine power. The engine and rear axle power, drawbar power, and tractive force tended to rise as the working speed increased. Conclusions: The power consumption and load characteristics differed for the plow and rotary-tillage operations. They may also differ depending on the soil conditions. Therefore, the power consumption and load characteristics in various work environments and regions should be analyzed, and reflected in the design of tractors and working implements. The results derived from this study can be used as a reference for such designs.

CHARACTERISTICS OF MINIMUM TILLAGE BY ROTARY TILLER FOR DIRECT RICE SEEDER

  • Park, S. H.;Lee, K. S.;Lee, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.154-161
    • /
    • 2000
  • A series of soil bin experiment was carried to investigate the effects of rotary blade shape, rotational direction of rotary blade, number of blade and soil cutting disk blade on the characteristics of partial tillage. Among the three types of rotary blades, rotary blade for cultivator was considered to be proper for partial tillage of direct seeder considering the torque requirements and ratio of soil breaking. There is no need to attach so many blades to the rotary shaft. Four rotary blades were enough for efficient partial tillage by rotary tiller. Though soil cutting disk blade assisted the better formation of seedbed furrow, attachment of the soil cutting disk blade increased torque requirements.

  • PDF

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

Effects of No-tillage Dry-seeding on Rice Growth and Soil Hardness

  • Choi, Jong-Seo;Kim, Sook-Jin;Park, Jeong Hwa;Kang, Shingu;Park, Ki-Do;Yang, Woonho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.662-668
    • /
    • 2016
  • No-tillage dry-seeding of rice can offer potential benefits by reducing time and labor cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil hardness in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. The seedling stand fell within optimum range for both no-till dry-seeding and wet-hill-seeding on puddled paddy. Plant height, number of tillers and SPAD values in no-tillage dry-seeding cultivation were higher than those observed in other methods. There were no significant differences in grain yield of rice among three cultivation methods. The quality characteristics of milled rice grown in no-tillage dry-seeding were similar to those grown in other cultivation methods. Soil hardness in top 10 cm depth was significantly higher in no-tillage dry-seeding than other cultivation methods, while soil hardness below 10 cm depth was highest in machine transplanting cultivation. Results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yield and grain quality.

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

Characteristics of Ride Vibrations in Rotary Tillage and Plowing Operations by Tractor (트랙터 로터리 작업과 쟁기 작업의 승차 진동 특성)

  • 박영준;박서범;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-216
    • /
    • 2004
  • This study was intended to investigate the characteristics of ride vibrations transmitted to tractor operator during rotary tillage and plowing operations. Seat accelerations of a 41 ps diesel tractor in rotary tillage and plowing were measured and evaluated as specified in the ISO 2631-1. Effects of working speed and tilling depth on ride vibration were investigated. The level of ride vibration was also evaluated in terms of health guidance caution zones. Some of the results of the study are as follows: 1. The level of ride vibration in plowing was about 4.3 times greater than in rotary tillage. 2. The effect of working speed in rotary tillage differs depending upon the tillage depth. The level of ride vibration was increased with the speed, but it decreased over a certain tillage depth. Fore and aft vibration was 2.2-2.7 times severer than horizontal and vertical vibrations. Dominant frequency band was 1-3.15 ㎐ in fore and aft, 1-3.15㎐ and 16-25㎐ in horizontal, and 16-25㎐ in vertical directions. 3. Plowing reduced the ride vibration by 42.8-50.2%. But its positive effect decreased as the plowing speed increased. In plowing operation, ride vibration was similar degrees in fore and aft, horizontal and vertical directions. The dominant frequency band in plowing operation was 1-2.5㎐ in fore and aft, 1-2.5㎐ in horizontal, and 1-8㎐ in vertical directions. 4. On a basis of daily work hours of 4, total level of ride vibrations in plowing operation is likely to be harmful to operator's health.

Tillage practices and fertilization effects on growth and nitrogen efficiency in soybean

  • Roy, Swapan Kumar;Jung, Hyun-Jin;Yoo, Jang-Hwan;Kwon, Soo Jeong;Yang, Jong-Ho;Kim, Sook-Jin;Chung, Keun-Yook;Kim, Hong-Sig;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.356-356
    • /
    • 2017
  • A field experiment was performed to evaluate the effects of tillage systems and fertilizer management on yield and nutrient uptake in Soybean. The plant height, fresh weight and dry weight of conventional tillage were much higher those observed for no-tillage. Significant differences in plant height were observed under tillage practices combined with fertilizer treatment. However, the greatest plant height (128.47 cm) was observed in conventional tillage with chemical fertilizer, and the lowest (45.4 cm) was observed in the no-tillage with green manure treatment. The highest fresh weight (172.4 g) and dry weight (44.1 g) were observed from the no-tillage chemical treatment in the late flowering stage of soybean. The plant concentration of nitrate was higher (2.29%) in no-tillage with green manure than it was with chemical fertilization. However, nitrogen increased steadily in all treatments, and the highest quantity of total nitrogen (476.7 Kg/ha) was observed in no-tillage with green manure. The N content in the soil decreased gradually just after the vegetative stage. Tillage practices and additional fertilizer application had an adverse effect on the uptake of N, P and K in soybean seeds. The nitrogen concentration in seeds was found to be increased in the no-tillage with green manure treatment. The uptake of more nitrogen induced a better yield. Thus, the no-tillage with green manure treatment had the greatest yield, although no significant difference was observed among foliar-applications and additional fertilization. Additionally, the phosphorus and potassium concentrations in seeds remained the same between the conventional tillage and no-tillage treatments. The results obtained in this study indicate that no-tillage strategies with fertilizers may influence the growth characteristics and mineral uptake in soybean.

  • PDF

Comparative analysis of growth, yields and grain quality of rice among no-tillage dry-seeding, wet-hill-seeding and transplanting

  • Choi, Jong-Seo;Kim, Sook-Jin;Kang, Shingu;Park, Jeong Hwa;Yoon, Young-Hwan;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.208-208
    • /
    • 2017
  • No-tillage practices are expected to provide several benefits such as increasing soil organic matter, reducing labor time and saving energy cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil properties in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. Rice seedling establishment was slightly higher in no-tillage dry-seeding treatment ($145seedling\;m^{-2}$) than wet-hill-seeding on puddled paddy treatment ($111seedling\;m^{-2}$), but the seedling establishment in both treatments fell within the optimum range for direct seeding rice cultivation. Plant height, number of tillers and chlorophyll content (SPAD value) of rice in no-tillage dry-seeding treatment were higher than those of the other treatments. However, no significant differences in grain yield was observed among three cultivation methods, and the yield ranged 5.8 to $5.9ton\;ha^{-1}$. The heading date from seeding under no-tillage dry-seeding treatment was on average 109 days, which was similar to that under machine transplanting treatment (112 days), but 10 days later than that under wet-hill-seeding on puddled paddy treatment (99 days). Grain quality characteristics grown in no-tillage dry-seeding were similar to those grown in the other cultivation methods. These results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yields and grain quality.

  • PDF

STUDY ON A CONTACT TYPE SENSOR FOR DETECTING HEIGHT FROM GROUND SURFACE

  • J. K. Ha;Lee, J. Y.;Park, Y. M.;Kim, T. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.178-187
    • /
    • 2000
  • The tillage operation by rotary implements is widely done in Korea. In the case of rotary implements, the tillage depth control system is one of important implement control systems. A contact type-sensor for measurement of the ground height was designed and fabricated to evaluate the possibility of application of the sensor on the tillage depth control system. Indoor experiments were conducted to obtain static and dynamic detection characteristics of the sensor under various conditions; 1) several moisture contents for four soil samples, 2) two soil surfaces with a designed configuration, 3) four heights of the sensor from the soil surface, 4) five traveling speeds of the carrier on which the sensor was attached, and so on. The experimental results showed the detection characteristics of the sensor sufficient as the ground height sensor of the tillage depth control system.

  • PDF