• Title/Summary/Keyword: Tilting control system

Search Result 120, Processing Time 0.033 seconds

The Improvement of Cab Tilting system in Heavy Truck and the Development of Program for Automatic Design Parameter Selection (트럭 캡 틸팅 시스템의 성능 향상 및 설계 파라미터의 자동 선정 프로그램의 개발)

  • Park, Sung-Hwan;Lee, Jin-Kul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.496-503
    • /
    • 1999
  • In this paper, the improvement of cap tilting system in heavy truck and the development of program for automatic design are discussed. Cab tilting system takes some important roles in heavy truck, absorbing discomfort vibration from load, increasing repair efficiency and making sure of safety. Common manual cab tilting system cannot be easily tilt up in sloped road, giving difficulty to driver as cal tilting up/down. So recently hydraulic cab tilting system is in wide use. But some problem such as tilting up/down speed is not constant and sudden swing of cab has brought discredit from user. Therefore, this paper presents advanced cab tilting system which prevents sudden swing of cab and development of program for selecting design parameters automatically.

  • PDF

The Development of Exclusive Control Valve for Improving the Performance of Truck Cab Tilting System (트럭 캡 틸팅 시스템의 성능 향상을 위한 전용 제어 밸브의 개발)

  • Park, Sung-Hwan;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.90-98
    • /
    • 2001
  • In this paper, the development of exclusive control valve for improving the performance of truck cab tilting system is discussed. Cab tilting system is implemented to the heavy truck for the convenience of driver. However when tilting up or down, sudden swing of cab has brought discredit on user. To improve this phenomena it is inevitable to use counter balance valve. But because of high pressure and low flow characteristic, general counter balance valve is unsuitable to cab tilting system. Therefore, this paper presents the developments of exclusive return pressure control valve which prevents sudden swing of cab and verify the validity of design through the computer simulation.

  • PDF

Study of Tilting Train Pantograph Control System (틸팅차량용 판토그라프 제어기술 연구)

  • Lee, Su-Gil;Han, Seong-Ho;You, Won-Hee;Shin, Gwang-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.353-355
    • /
    • 2002
  • This paper describes the pantograph design result for tilting train at conventional railway. EMU(Electrical Multiple Unit) Tilting Train is important tilting pantograph. Tilting train pantograh should be operated to commercial service speed 180Km/h of 200Km/h at KNR upgrade railroad. This paper is write tilting train pantograph control system.

  • PDF

A Study on a Configuration of the Load Characteristic Evaluation Device Using Hydraulic Power for the Analysis of the Tilting Kinetic Mechanism (틸팅 부하메커니즘 특성 분석을 위한 유압식 부하특성 평가 장치구성에 대한 연구)

  • Lee, Jun-Ho;Kim, Ho-Yeon;Han, Seong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1152-1158
    • /
    • 2011
  • In this paper a configuration of the load evaluation device for the tilting actuator using hydraulic power is presented, which makes it possible to measure the force action on the tilting actuator. It is possible to measure only current using the conventional electro-mechanical actuator when the bogie is in the process of the tilting. This makes impossible to measure the force acting on the tilting actuator. In order to overcome this problem a kinetic mechanism test system using hydraulic cylinder is proposed. The system are consisted of hydraulic cylinder for the tilting actuation, control system to control hydraulic power, sensors to measure for force and displacement and monitoring system for the user interface.

Study of Tilting Train Pantograph Control System for EMU

  • Lee, Su-Gii;Han, Seong-Ho;Koo, Dong-Hea;Lee, Woo-Dong;Han, Yong-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1754-1756
    • /
    • 2003
  • This paper describes the pantograph design result for tilting train at conventional railway. EMU(Electrical Multiple Unit) Tilting Train is important tilting pantograph. Tilting train pantograh should be operated to commercial service speed 180Km/h of 200Km/h at KNR upgrade railroad. This paper is written about train pantograph control system

  • PDF

Development of a Control and Virtual Realty Visual System for the Tilting Train Simulator (틸팅 차량용 시뮬레이터 적용을 위한 통제 및 가상현실 영상 시스템 개발)

  • Song Young-Soo;Han Seong-Ho;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • This paper presents a development of the control and the virtual reality visual system for a tilting train simulator. The user of the tilting train simulator is able to set up the environmental and operating conditions through the user interface provided by the control system. In the control system, an arbitrary track which has user-defined curve radius, length and direction can be generated. The virtual reality visual system provides an artificial environment that is composed of several facilities such as station, platform, track, bridge, tunnel and signaling system. In order to maximize the reality, all of the 3D modeling were based on the real photographs taken in the Jungang line. A dome screen with 1600mm diameter was used to maximize the view angle. The hemispherical screen can ensure the view angle of the 170 degrees of vertical direction and 135 degrees of lateral direction.

Application of Normal Pantograph to Tilting Vehicle with Technical Modification of Vehicle System (일반 판토그라프의 틸팅차량 적용을 위한 차량시스템의 개선안)

  • Mun, Hyung-Suk;Eum, Ki-Young;Yeo, In-Ho;You, Won-Hee;Kim, Nam-Po
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.887-892
    • /
    • 2004
  • On curved rail, the speed of train must be reduced in order to keep riding comfort. So, the train has the speed limitation in conventional railway line. But if the train has the tilting mechanism, the speed of train is able to be increased while maintaining the riding comfort. Generally, the tilting train is faster than the non-tilting train about 30% in curve. The tilting train technology and reduction of travel time has been carefully investigated by KRRI (Korea Railroad Research Institute). Based on the primary research result from KRRI, tilting control system and tilting operation interlace are considered its core technology to apply tilting train to Korean conventional railway. In this paper application of non-tilting pantograph to tilting system will be introduced. New type of bogie frame and system modification of vehicle are invented to apply non-tilting pantograph to tilting train.

  • PDF

Anti-skid Control System Analysis of a Tilting Train (틸팅차량의 활주방지 제어시스템 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Kim, Min-Soo;Goo, Byeong-Choon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • The presence of low adhesion at the wheel-rail contact point can result in skid of train wheels, and the skid, in turn, results in flats appearing on the wheels. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents dynamic modeling of a tilting train and the brake system of the tilting train, and analyzes the anti-skid logic used in the tilting train. The validity of the analysis is demonstrated via simulation study using Simulink for skid and re-adhesion circumstances of the tilting train.

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

Development of a 6DOF Motion Platform for the Tilting Train Simulator (틸팅 차량용 시뮬레이터를 위한 6자유도 운동판 개발)

  • Kim Nam-Po;Song Young-Soo;Han Seong-Ho;Choi Kang-Yeon;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • This paper presents a development of 6DOF motion platform far a tilting train simulator. The tilting train simulator will be used to verify the tilting electronics and tilting control algorithm which are to be applied the Korean 180km/h tilting train. The tilting train simulator is composed of a 6-axis motion platform, a track generation system, a graphic user interface, and a visualization system with 1600mm-diameter dome screen. In this study, the 6DOF motion platform for a tilting train simulator has been designed and manufactured. The motion platform developed is a motion platform of Stewart type. The inverse kinematic analysis has been performed to determine the length of the links of the platform. Furthermore, the specification of the motors have been evaluated by the equation of motion of the platform.