• Title/Summary/Keyword: Tilting-train

Search Result 345, Processing Time 0.043 seconds

Introduction of Development Status of the Korean Tilting Train eXpress (한국형 틸팅열차 개발 현황 소개)

  • Seo, Sung-Il;Han, Seong-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.229-233
    • /
    • 2005
  • This paper explains development status of the Korean tilting train. The Korean Tilting Train eXpress (TTX) project has been carried out to develop all the core technologies related to tilting train and infra-technology to provide high speed inter-city service with the speed of 180 km/h as well as maintenance-free technology for conventional railway system. The TTX project is under 5th stage. In this stage, manufacturing and combination test for the main components are being conducted. By the end of next year, assembly of TTX will be completed.

  • PDF

Safety evaluation of tilting train on circular curve (틸팅열차의 원곡선부 주행시 안전성 평가)

  • Kim, Sang-Soo;Eum, Ki-Young;Bae, Jae-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1703-1712
    • /
    • 2010
  • The safety of tilting train running on curved track is, in general, evaluated with a derailment coefficient calculated by the ratio of wheel load and lateral force, Particularly on curve, the wheel load and lateral force on rail may cause trackbed to be deformed, depending on their intensity, and moreover, often result in critical accident such as derailment. This study hence was intended to identify the cause of wheel load and lateral force so as to suggest the allowable wheel load reduction rate, lateral force limit and derailment coefficient, thereby quantitatively evaluating the operational safety of tilting train. This study therefore was aimed to analyze the wheel load and lateral force occurred during tilting train's operation on circular curve in such a way of comparing with traditional trains, by axle and speed, in a bid to eventually evaluate the operational safety of tilting train.

  • PDF

Evaluation of Fatigue Strength for Bogie Frame of a Tilting Train (틸팅차량용 대차프레임의 피로강도 평가)

  • Park, Byung-Hwa;Kim, Nam-Po;Kim, Jung-Seok;Lee, Kang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.130-135
    • /
    • 2004
  • The fatigue strength analysis is performed for the bogie frame of Korean tilting train which is newly developed. The loading conditions imposed on the bogie frame during carbody tilting are derived in addition to the loadings based on the JIS E4207 standard. The tilting bogie frame is modeled for the finite element analysis and fatigue analysis is carried out under Goodman equation. It is concluded the bogie frame of the developed tilting train has enough structural safety.

  • PDF

Analysis of aerodynamic characteristics on the Korean Tilting Train Express (한국형 틸딩 차량의 공력 특성 해석)

  • Yun Su-Hwan;Kim Tae-Yoon;Kwon Hyeok-bin;Lee Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.679-684
    • /
    • 2004
  • Numerical analysis of aerodynamic characteristics was differently performed according to the running situation of the Korean Tilting Train eXpress (TTX) that would be introduced for an improvement in efficiency of the used railroad track. Fluent6.0 was used for the analysis of Non-tilting case, Tilting case and Passing-by case with the model of TTX. As a result, the aerodynamic drag had little difference between Tilting and Non-tilting case. However, pressure contour under the train of Tilting case was not symmetry because the gap between a train and the ground was different at both sides. And this disparity of pressure worked on the side force. In Passing-by case attraction and counterattraction occurred alternately and affected to the opposite train. When two trains were side by side, the maximum attraction was generated especially. Through an analysis of pressure wave in tunnel a large variation of pressure was generated by the bluff nose of TTX. The results in this study would be good data for the aerodynamic characteristic on TTX and provide important information to judgment of running safety.

  • PDF

Characteristics of Curved Track Behaviors according to Traveling Tilting Train (틸팅차량 주행에 따른 기존선 곡선 궤도의 거동 특성)

  • Park, Yong-Gul;Choi, Jung-Youl;Sung, Deok-Yong;Chun, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.692-700
    • /
    • 2007
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. In the area of wayside structure, the stability of track structure and train run shall be evaluated through the review of impact by increased speed by developed train on track structure. The study thus was intended to evaluate the impact on track while a tilting train is running the curve section, which is vulnerable to accelerated train speed. The analysis of tilting train test running the part of Chungbuk line and Honam line was conducted to identify the impact on existing track performance by tilting train. To identify the movement behavior of each part of track while tilting train, high speed train and traditional train (Mugunghwa and freight train) were running the existing line, wheel load, lateral wheel load, rail bending stress, vertical and lateral displacement of rail and vertical displacement of sleeper were compared and analyzed so as to evaluate the expected impact by tilting train for improving the train speed.

The Evaluation of the Structural Strength to Check the Basic Design for the Composite Carbody of the Tilting Train (복합재 틸팅열차 차체 구조물의 기본설계 검증을 위한 강도 평가)

  • 신광복;박기진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.203-206
    • /
    • 2003
  • Using composite materials for the carbody of tilting train has many advantages such as manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage could be the possibility of lightweight product. In the leading countries, the composite materials are used for the material fur drivers'cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train carbody structure. In this paper, we conducted the evaluation of structural stability for the aluminum and composite carbody of the Korean Tilting Train express(TTX) with the service speed of 180km/h.

  • PDF

A study on the Critical speed of Korean Tilting Train (한국형 틸팅열차의 임계속도에 관한 연구)

  • Kim, Nam-Po;Kim, Jung-Seok;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.162-168
    • /
    • 2007
  • The critical speed above which the vehicle become unstable should be fundamentally verified in the development of new train. In case of high speed tilting train, which require both higher critical speed and higher curving speed, the critical speed should be more carefully treated because the both requirements are conflicting each other in the conventional train design. This research has been performed to estimate the linear and non-linear critical speed of 200km/h Korean Tilting Train which has been developing. The newly developed self-steering mechanism was attached to the tilting train to secure critical speed under the lower yaw stiffness which was inevitable to secure higher curving performance. The simulation to predict critical speed was done by commercial vehicle dynamic S/W. Full scale roller rig test was carried out for the validation of numerical results and effectiveness of self-steering mechanism.

  • PDF

The optimization of suspension system for high performance of Korean Tilling Train (한국형 틸팅 열차의 성능 향상을 위한 현가장치 최적화)

  • Lee, Su-In;Park, Tae-Won;Yoon, Ji-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1224-1228
    • /
    • 2009
  • The korean tilting train can increase the whole operating speed at a curved railroad, reducing the lateral acceleration with the tilting mechanism unlike the train developed before. However, increasing operating speed on the curved section, may cause safety problem of train travel. In general, a suspension system has important effects on driving safety. Therefore, optimization of suspension system is necessary to secure the safety of the tilting train. In this study, the tilting train suspension system has been optimized using Design of Experiments (DOE). First, the design parameter is selected using sensitivity analysis. A lateral acceleration which affects on the driving safety is chosen as the objective function. And the Design of Experiments (DOE) is used for optimization. As a result, new design parameters which show better performance than the existing suspension system has been suggested.

  • PDF

A study on the Critical speed of Korean Tilting Train Hanbit200 (한국형 틸팅열차 한빛200의 임계속도에 관한 연구)

  • Kim, Nam-Po;Kim, Jung-Seok;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.257-263
    • /
    • 2007
  • The critical speed above which the vehicle become unstable is one of the items that should be verified in the development of a new train. In the case of a high speed tilting train, which requires both higher critical speed and higher curving speed, the critical speed should be more carefully treated because the both requirements are in conflict with each other in the conventional train design. The main purpose of the present work is to estimate the linear and non-linear critical speeds of 200km/h Korean Tilting Train 'Hanbit200' under development. The newly developed self-steering mechanism was attached to the tilting train to ensure that the critical speed falls under the lower yaw stiffness which is needed to secure higher curving performance. The simulation for predicting the critical speed was done by a commercially available vehicle dynamics software. A full scale roller rig test was carried out to validate the numerical results and to verify the effectiveness of the self-steering mechanism.

Development of tilting simulator for evaluation of Tilting control of Highspeed Tilting EMU(TTX) (고속틸팅전기차량(TTX)의 틸팅제어성능 검증을 위한 시뮬레이터 개발)

  • Han, Seong-Ho;Kim, Jung-Suk;Song, Young-Su;Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.232-234
    • /
    • 2004
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed tilting control simulator to evaluate tilting control performance of TTX(tilting train express) with maximum operation speed 180 km/h.

  • PDF