• Title/Summary/Keyword: Time delay

Search Result 6,707, Processing Time 0.034 seconds

Configuration of Simulation Object for Time Varying Time Delay Functions (시변 시간지연 함수를 위한 시뮬레이션 객체의 구성)

  • Soon-Man Choi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.603-610
    • /
    • 2004
  • Time delays are included in most of actual systems, and some of which are shown as time varying. To analyze the time varying time delay system in the time domain. a useful delay module to express the function as a tool is much helpful to get corresponding outputs under given conditions. A method is proposed here to design the algorithm of time delay module for simulation or control purposes, including the problems of initializing and reallocating data in buffer. After classifying the time varying time delay into the distributed mode and lumped mode, an object to describe delay module is configured and tested under the defined input signal and given time delay variation. The simulation results show that the output of module matches reasonably with the case of real system.

Loop transfer recovery design for input-delayed systems (입력 시간지연 시스템의 루우프 전달복구 설계 기법)

  • 박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1201-1204
    • /
    • 1996
  • The previous results on LTR methods for time delay systems need the solution of the operator-type Riccati equation. In addition, it can be difficult to make the target loop shape representing the design specification. This paper proposes a new LTR method for input-delayed systems using well-established LTR method for non-delay systems. For doing this, a time delay margin is derived and the time delay of the input-delayed systems is assumed less than equal to the time delay margin. A simple example is presented for illustrations.

  • PDF

Analysis of Effects of Time-Delay in an Inverted Pendulum System Using the Controller Area Network

  • Cho, Sung-Min;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1474-1479
    • /
    • 2004
  • In this paper, the design of the network system using the CAN and the analysis of effects of time delay in the system are presented. A conventional implementation technique induces many problems because of the amount and complexity of wiring and maintenance problems. The network system reduces these problems, but it cause another problem; time delay. Time delay in a sampling time does not have much effects on the system, but time delay over the sampling time changes the control frequency and ended up makes the system unstable. It is verified that time delay between each parts has different effects on the entire system. The results from this paper will be a base for studying algorithms to reduce effects of time delay in the system using the CAN.

  • PDF

Compensation Technique of Measurement Time Delay in Transfer Alignment Using the Double Moving Window Buffer (이중 Moving Window 버퍼 기반 전달정렬 측정치 시간지연 보상기법)

  • Kim, Cheon-Joong;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.684-693
    • /
    • 2011
  • Measurement time delay in the transfer alignment is very important. It has been well known that the time delay degrades the alignment performance and makes some navigation errors on the transfer alignment of slave INS(SINS). Therefore there are many schemes to eliminate that time delay but the compensation technique through the estimation by Kalman filter through modeling the time delay as a random constant is generally used. In the case of change over measurement time delay or the large measurement time delay, estimation performance in the existing compensation technique is degraded because model of time delay is not correct any more. In this paper, we propose the method to keep the time delay almost constant even though in the abnormal communication state and very small through feedback compensation using double buffer. Double buffer consists of two moving window to temporarily store measurements from master INS and slave INS in real time.

Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control

  • Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.445-458
    • /
    • 2022
  • Some of the control systems used in engineering structures that use sensors and decision systems have some time delay reducing efficiency of the control system or even might make it unstable. In this research, in addition to considering the effect of the time delay in vibration control process, predictive control is used to compensate the time delay. A semi-active vibration control approach with the help of magneto-rheological dampers is implemented. In addition to using fuzzy inference system to determine the appropriate control voltage for MR damper, structural behavior prediction system and specifying future responses are also used such that the time delays occurring within control process are overcome. For this purpose, determination of prediction horizon is conducted for one, five, and ten steps ahead for single degree of freedom structures with periods ranging from 0.1 to 4 seconds, subjected to twenty earthquake excitations. The amount of time delay applied to the control system is 0.1 seconds. The obtained results indicate that for 0.1 second time delay, average prediction error values compared to the case without time delay is 3.47 percent. Having 0.1 second time delay in a semi-active control system reduces its efficiency by 11.46 percent; while after providing the control system with structure behavior prediction, the difference in the results for the control system without time delay is just 1.35 percent on average; indicating a 10.11 percent performance improvement for the control system.

Effects of the time delay on the stability of a virtual wall model with a first-order-hold method (시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

Adaptation of Time-Belay in Command Shaping Filter for Vibration Suppression in Flexible Motion System (유연체 모션시스템의 진동억제를 위한 명령성형필터의 시간지연 값 학습)

  • Park J.H.;Rhim S.S.;Lee S.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.43-44
    • /
    • 2006
  • The performance of the direct adaptive time-delay filter depends on the select time-delay. In this paper, the authors introduce a new scheme to adapt the time-delay which is to be used in conjunction with the direct adaptive command shaping for the improved vibration suppression in flexible motion system. In order to formulate the time-delay adaptation scheme, the authors have analyzed the effect of the time-delay value on the performance of the direct adaptive command shaping filter. By modifying the direct adaptation formula based on the analysis result the authors have established a set of equations to adapt the time-delay toward the optimal value. Simulation results show the effectiveness of the proposed time-delay adaptation approach for the improved vibration suppression.

  • PDF

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

A delay model for CMOS inverter (CMOS 인버터의 지연 시간 모델)

  • 김동욱;최태용;정병권
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.11-21
    • /
    • 1997
  • The delay models for CMOS invertr presented so far predicted the delay time quite accurately whens input transition-time is very small. But the problem that the accuracy is inclined to decrease becomes apparent as input transition tiem increases. In this paper, a delay model for CMOS inverter is presented, which accuractely predicts the delay time even though input transition-time increases. To inverter must be included in modeling process because the main reason of inaccuracy as input transition tiem is the leakage current through the complementary MOS. For efficient modeling, this paper first models the MOSes with simple I-V charcteristic, with which both the pMOS and the nMOS are considered easily in calculating the inverter delay times. This resulting model needs few parameters and re-models each MOS effectively and simply evaluates output voltage to predict delay time, delay values obtained from this effectively and simply evaluates output voltage to predict delay time, delay values obtained from this model have been found to be within about 5% error rate of the SPICE results. The calculation time to predict the delay time with the model from this paper has the speed of more than 70times as fast as to the SPICE.

  • PDF

Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach (시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.