• Title/Summary/Keyword: Timing offset estimation

Search Result 64, Processing Time 0.022 seconds

An OFDM Frequency Offset Estimation Scheme Robust to Timing Error (시간 오차에 강인한 OFDM 주파수 옵셋 추정 기법)

  • Kim Sang-Hun;Yoon Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.623-628
    • /
    • 2006
  • This paper addresses the frequency offset estimation problem in the presence of the timing error for OFDM systems. When the timing error exists, the correlation value used for the frequency offset estimation could be reduced significantly due to the timing error, resulting in considerable degradation in estimation performance. In this paper, using the coherence phase bandwidth (CPB) and a threshold, a novel frequency offset estimation scheme is proposed and based on which, an efficient timing error estimation scheme is also proposed for the re-estimation of the frequency offset. The performance comparison results show that the proposed frequency offset estimation scheme is not only more robust to the timing error but also has less computational complexity, as compared with the conventional schemes. It is also demonstrated by simulation that theproposed timing error estimation scheme gives a reliable estimate of the timing error.

A Novel OFDM Integer Frequency Offset Estimation Scheme Using Differential Combining (차동 결합을 이용한 새로운 OFDM 정수 주차수 옵셋 추정 기법)

  • Ahn, Sang-Ho;Chong, Da-Hae;Han, Tae-Hee;Kim, Sang-Hyo;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.627-632
    • /
    • 2008
  • The timing offset is one of the main error sources in estimating the frequency offset in orthogonal frequency division multiplexing (OFDM) systems. Although some works have been done to mitigate the influence of the timing offset on the frequency offset estimation, most of the investigations require the knowledge of the timing offset range, which is not generally available in practical systems. In this paper, we propose a new frequency offset estimation scheme using differential combining between two successive correlation samples, which does not require the knowledge of the timing offset range, and thus, is robust to the timing offset variation. The simulation results show that the proposed scheme is not only robust to the timing offset variation, but also generally performs better than the conventional scheme on the average, in the case of the timing offset range being not known exactly.

A Timing Offset Estimation Scheme Based on Cross-Correlation Accumulation for Initial Ranging of IEEE 802.16e Systems (IEEE 802.16e 초기 레인징을 위한 상호 상관 누적 기반 타이밍 옵셋 추정 기법)

  • Lee, Jaewoo;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1140-1144
    • /
    • 2012
  • In this paper, we propose a timing offset estimation scheme for initial ranging of IEEE 802.16e systems. The conventional scheme estimates the timing offset by using the cross-correlation between the local and received signals only. On the other hand, this paper proposes a timing offset estimation scheme with additional cross-correlations accumulated on the conventional cross-correlation. The additional cross-correlations are obtained by using the ranging signal with a repetitive structure. Numerical results show that the proposed scheme provides the better timing offset estimation performance compared with that of the conventional scheme.

An Improved Multi-stage Timing Offset Estimation Scheme for OFDM Systems in Multipath Fading Channel (다중경로 페이딩 환경에서 OFDM 시스템을 위한 개선된 다중단계 타이밍 옵셋 추정기법)

  • Park, Jong-In;Noh, Yoon-Kab;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.589-595
    • /
    • 2011
  • This paper proposes an improved multi-stage timing offset estimation scheme for orthogonal frequency division multiplexing (OFDM) systems in multipath fading channel environment. The conventional multi-stage timing offset estimation scheme is very sensitive to the random multipath components. By exploiting the sample standard deviation of the cross-correlation values, the proposed scheme achieves a robustness to the random multipath components. Simulation results demonstrate that the proposed scheme has a higher correct estimation probability and has a better mean square error (MSE) performance than the conventional scheme in multipath fading channels.

Blind symbol timing offset estimation for offset-QPSK modulated signals

  • Kumar, Sushant;Majhi, Sudhan
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.324-332
    • /
    • 2020
  • In this paper, a blind symbol timing offset (STO) estimation method is proposed for offset quadrature phase-shift keying (OQPSK) modulated signals, which also works for other linearly modulated signals (LMS) such as binary-PSK, QPSK, 𝜋/4-QPSK, and minimum-shift keying. There are various methods available for blind STO estimation of LMS; however, none work in the case of OQPSK modulated signals. The popular cyclic correlation method fails to estimate STO for OQPSK signals, as the offset present between the in-phase (I) and quadrature (Q) components causes the cyclic peak to disappear at the symbol rate frequency. In the proposed method, a set of close and approximate offsets is used to compensate the offset between the I and Q components of the received OQPSK signal. The STO in the time domain is represented as a phase in the cyclic frequency domain. The STO is therefore calculated by obtaining the phase of the cyclic peak at the symbol rate frequency. The method is validated through extensive theoretical study, simulation, and testbed implementation. The proposed estimation method exhibits robust performance in the presence of unknown carrier phase offset and frequency offset.

Improved Timing Synchronization Algorithm for OFDM Systems (다경로 페이딩 채널에서의 OFDM 심볼 동기 알고리즘)

  • 박병준;고은석;천현수;강창언;홍대식
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.41-44
    • /
    • 2000
  • In this paper, an improved timing synchronization method for OFDM system is proposed. In multipath fading channels, timing offset estimation algorithm based on simple correlation metric can cause inter-symbol interference (ISI). The proposed algorithm promises accurate timing offset estimation, which can be achieved by simple windowing. The estimation errors in several multipath channels are evaluated in computer simulations.

  • PDF

An Alternative Carrier Phase Independent Symbol Timing Offset Estimation Methods for VSB Receivers (VSB 수신기를 위한 반송파 위상 오차에 독립적인 심벌 타이밍 옵셋 추정 알고리즘에 대한 연구)

  • Shin, Sung-Soo;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.85-95
    • /
    • 2011
  • In this paper, we propose an alternative carrier phase independent timing recovery method for VSB receivers. The Gardner algorithm may not estimate a timing offset in VSB systems when the residual carrier phase offset is contained in the signal. We use the conjugate multiplication of received signals for cancelling out the carrier phase offset. Then Gardner algorithm is employed for extracting the spectral line. The proposed method generates a consistent timing error even in the presence of the carrier phase offset.

Integer Frequency Offset Estimation Scheme Robust to Timing Offset for OFDM-Based CR Systems (OFDM 기반 CR 시스템에서 시간 옵셋에 강인한 정수 주파수 옵셋 추정 기법)

  • Lee, Young-Yoon;Song, Chong-Han;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.554-561
    • /
    • 2010
  • This paper proposes an integer frequency offset estimation scheme robust to timing offset for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. The proposed scheme exploits a feature that a sample distance between a continual pilot and a scattered pilot nearest to it in an OFDM symbol belongs to one of predetermined distances. First after calculating a correlation value of every continual pilot and its nearest scattered pilot. Then, it is divided into several groups according to the sample distances. Since correlation values with the same sample distance undergo the same effect of the timing offset, the effect of the timing offset can be removed by re-correlating these correlation values. From the simulation results we can confirm that the proposed algorithm estimates the integer frequency offset with the robustness to the timing offset when compared to a conventional scheme.

A Coarse Frequency Offset Estimation Based on the Differential Correlation in DAB Systems

  • Kim, Han-Jong;Paik, Jong-Ho;Park, Cheol-Hee;You, Young-Hwan;Ju, Min-Chul;Jin-Woong
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.105-111
    • /
    • 2001
  • This paper presents a new and robust technique for a coarse frequency offset estimation in OFDM systems. As an evaluation of the proposed algorithm, we apply it to Eureka 147 DAB system. The proposed coarse frequency offset estimation algorithm is based on the differential detection technique between adjacent subcarriers to eliminate the phase shift effects of symbol timing offset and fractional frequency offset. A coarse frequency offset is determined from the correlation output between a received interarrier differential phase reference symbol and several locally generated but frequency-shifted intercarrier differential phase reference symbols. The performance of our estimation algorithm is evaluated by means of computer simulation and is compared with those of previous proposed algorithms for DAB transmission modes I, II, III, and IV. Simulation results show that the proposed algorithm generates extremely accurate estimates with low complexity irrespective of the symbol timing offset.

  • PDF

Symbol timing Offset Estimation for OFDM Using the 1 Symbol Offset Training Symbol and Controled CP Power (OFDM의 심벌 타이밍 옵셋 추정을 위한 1심벌 옵셋의 훈련심벌 사용법과 CP 출력조절법)

  • Ock, Youn Chul;Ha, Yeong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.3-13
    • /
    • 2013
  • This paper contains two algorithms proposed for synchronization in OFDM system. The first is having 1 symbol offset while calculating the timing metric, and the second is introduced in new parameter such as Reduction Factor(${\rho}$), Break Constant(${\beta}_k$) and Implant Depth(${\delta}_I$) in order to control the power of CP(Cyclic Prefix) area. Two proposed method are evaluated performance with conventional methode, and than the result of simulation show proposed methods is better than conventional methode while it experience into multipath fading channel.