• Title/Summary/Keyword: Toeplitz operators

Search Result 69, Processing Time 0.023 seconds

REDUCING SUBSPACES OF WEIGHTED SHIFTS WITH OPERATOR WEIGHTS

  • Gu, Caixing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1471-1481
    • /
    • 2016
  • We characterize reducing subspaces of weighted shifts with operator weights as wandering invariant subspaces of the shifts with additional structures. We show how some earlier results on reducing subspaces of powers of weighted shifts with scalar weights on the unit disk and the polydisk can be fitted into our general framework.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

HARMONIC BERGMAN SPACES OF THE HALF-SPACE AND THEIR SOME OPERATORS

  • Kang, Si-Ho;Kim, Ja-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.773-786
    • /
    • 2001
  • On the setting of the half-space of the Euclidean n-space, we consider harmonic Bergman spaces and we also study properties of the reproducing kernel. Using covering lemma, we find some equivalent quantities. We prove that if lim$ lim\limits_{i\rightarrow\infty}\frac{\mu(K_r(zi))}{V(K_r(Z_i))}$ then the inclusion function $I : b^p\rightarrow L^p(H_n, d\mu)$ is a compact operator. Moreover, we show that if f is a nonnegative continuous function in $L^\infty and lim\limits_{Z\rightarrow\infty}f(z) = 0, then T_f$ is compact if and only if f $\in$ $C_{o}$ (H$_{n}$ ).

  • PDF

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

LINEAR ISOMORPHIC EULER FRACTIONAL DIFFERENCE SEQUENCE SPACES AND THEIR TOEPLITZ DUALS

  • RAJ, KULDIP;AIYUB, M.;SAINI, KAVITA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.657-668
    • /
    • 2022
  • In the present paper we introduce and study Euler sequence spaces of fractional difference and backward difference operators. We make an effort to prove that these spaces are BK-spaces and linearly isomorphic. Further, Schauder basis for Euler fractional difference sequence spaces $e^{\varsigma}_{0,p}({\Delta}^{(\tilde{\beta})},\;{\nabla}^m)$ and $e^{\varsigma}_{c,p}({\Delta}^{(\tilde{\beta})},\;{\nabla}^m)$ are also elaborate. In addition to this, we determine the 𝛼-, 𝛽- and 𝛾- duals of these spaces.