• Title/Summary/Keyword: Tool-Setup

Search Result 143, Processing Time 0.031 seconds

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Analysis of Tool and Workpiece Setup in v-Groove Micromachining (V-그루브 미세가공에서의 공구 및 공작물 셋업 해석)

  • Cho Jung-Woo;Yang Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.957-964
    • /
    • 2006
  • As the requirement of LCD products which are large screen and have high brightness increases, the role of light guide panel (LGP) of which micro-features diffuse the light uniformly on surface is getting important. In general, there are many errors in machining like machine tool errors process error, setup error and etc. The amount of setup error in general machining is not so big in comparison with the others, so it is mostly neglected. But, especially in v-groove micromachining, setup error has a significant effect on micro-features. Low quality product and high cost are resulted from setup error. In v-groove micromachining, to confirm the effect of setup error, it is identified and then setup error synthesis model is derived from analysis of tool and workpiece setup. In addition, to predict the micro-features affected by setup error and enhance the production efficiency, the setup condition satisfying the tolerance of micro-features is geometrically analyzed and presented.

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

Rough Cut Tool Path Planning in Fewer-axis CNC Machinig (저축 CNC 환경에서의 황삭가공)

  • 강지훈;서석환;이정재
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 1997
  • This paper presents rough cut tool path planning for the fewer-axis machine consisting of a three-axis CNC machine and a rotary indexing table. In the problem dealt with in this paper, the tool orientation is "intermediately" changed, distinguished from the conventional problem where the tool orientation is assumed to be fixed. The developed rough cut path planning algorithm tries to minimize the number of tool orientation (setup) changes together with tool changes and the machining time for the rough cut by the four procedures: a) decomposition of the machining area based on the possibility of tool interference (via convex hull operation), b) determination of the optimal tool size and orientation (via network graph theory and branch-and bound algorithm), c) generation of tool path for the tool and orientation (based on zig-zag pattern), and d) feedrate adjustment to maintain the cutting force at an operation level (based on average cutting force). The developed algorithms are validated via computer simulations, and can be also used in pure fiveaxis machining environment without modification.

  • PDF

Workpart and Setup Planning for NC Machining of Prismatic Model:Feature-Based Approach (형상인식에 의한 다면체모델의 NC 가공을 위한 소개 및 셋업계획)

  • 지우석;서석환;강재관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1078-1083
    • /
    • 1992
  • Extracting the process planning information from the CAD data is the key issue in integrated CAD/CAM system. In this paper, we develop algorithms for extracting the shape and setup configuration for NC machining of prismatic parts. In determining the workpart shape, the minimum-enclosing condept is applied so that the material waste is minimized. To minimize the number of setups, feature based algorithm is developed considrint the part shape, tool shape, and tool approach direction. The validity and effectiveness of the developed algorithms were tested by computer simulations.

  • PDF

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.

A Study on the Development of Measurement Setup for Crater Wear by Diffraction Grating in Turning (선삭에서 회절격자를 이용한 크레이터마모 측정장치 개발에 관한 연구)

  • Kim, Yeong-Il;Kim, Se-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-95
    • /
    • 1992
  • There is the high interest for sensing of tool wear with the aim of controlling machine tools productivity from the point of view of qualitity. Difficulties in this measurement are also known. This study is on the development of measurement setup for crater wear by CCD image inturning. In this study, the crater wear measurement system consists of the He-Ne gas laser, diffraction grating. CCD camera, noise filter, slit, microcomputer, diverging lens, converging lens and so on. He-Ne laser beam passes through a diverging lens and a diffraction grating is positioned properly. A converging lens focuses so that the interference fringes can be obtained on the crater wear. Performance test revealed that the developed image technique provides precise, absolute tool-wear quantification and reduces human measurement errors. The results obtained are as follows 1. The digitizing of one image requires less than 2ses. 2. It can give detailed information on crater wear with limited times and errors 3. All parameters required by specification are easily obtained for several points of the cutting edge.

  • PDF

Setup Data Generation for Positional 5-axis Machining of Die and Mold (금형의 고정형 5축 가공 시 공구자세 셋업 정보 산출시스템 개발)

  • Lee, Jung-Geun;Yang, Seong-Jin;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.5
    • /
    • pp.382-390
    • /
    • 2008
  • Five-axis machining has been applied to manufacture of turbine blades, impellers, marine propellers. Nowadays it extends to mold & die machining, where more productivity as well as added value is expected. The five-axis machining can be divided into positional and continuous, according to the variableness of tool orientation during material removal process. The positional five-axis machining is commonly applied to the regional machining on a whole part surface in mold manufacturing industry, where the tool orientation for each region (area) should be determined to be feasible, that is, avoiding any interference such as machine tool collision, etc. Therefore it is required for a CAM programmer to decide a feasible tool orientation in generating tool-paths on a designated area, because it is a very tedious job to obtain such information by utilizing a commercial CAM system. The developed system generates feasibility data on tool orientation and machining region, which facilitates the CAM programmer's decision on a feasible tool orientation.

Scheduling of flexible manufacturing systems with the consideration of tool set-up times (공구셋업시간을 고려한 유연생산시스템의 스케쥴링)

  • Yim, Seong-Jin;Lee, Doo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.90-101
    • /
    • 1998
  • This paper presents a scheduling method that uses Petri net modeling and heuristic search to handle the tool setup. In manufacturing systems, a tool is attached to a particular machine to process a particular operation. The activity to attach a tool to a particular machine and detach the tool from the machine requires time. The processing time of operations varies according to the attached tool and the machine used. The method proposed in this paper uses Petri net to model these characteristics and applies a search algorithm to the reachability graph of the Petri net model to generate an optimal or near-optimal schedule. New heuristic functions are developed for efficient search. The experimental results that show the effectiveness of the proposed method are presented.

Tool Mark Removal Method of Aspherical Glass tens Mold by Reverse-rotational Eccentric Motion (역회전 편심 운동 방식에 의한 비구면 유리렌즈 금형의 공구마크 제거 방법에 관한 연구)

  • Lee, H.C.;Kim, J.U.;Kang, H.H.;Kim, D.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.172-176
    • /
    • 2009
  • In this paper, new aspherical surface polishing mechanism is suggested to polish aspherical glass lens mold by both airbag polishing tool and reverse-rotational eccentric motion. Up to now, conventional aspherical lens polishing method by the small tool polishing uses the aspherical surface profile and the trajectory of the polishing tool is also controlled. However, full contact concept by airbag polishing tool and no position control make the easy polishing setup and does not need aspherical design profile. An aspherical lens polishing machine was made for this study and a tool mark removal experiment fur the fine-grounded lens mold was successfully performed.