• Title/Summary/Keyword: Torque Density

Search Result 307, Processing Time 0.03 seconds

Optimum Design Criteria for Maximum Torque Density and Minimum Torque Ripple of Flux Switching Motor using Response Surface Methodology

  • Lee, Jung-Ho;Lee, Tae-Hoon
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.74-77
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of a Flux Switching Motor (FSM) using response surface methodology (RSM) & finite element method (FEM). The focus of this paper is to find a design solution through the comparison of torque density and torque ripple which vary with rotor shape. And then, a central composite design (CCD) mixed resolution was introduced and analysis of variance (ANOVA) was conducted to determine the significance of the fitted regression model. The proposed procedure allows one to define the rotor dimensions, starting from an existing motor or a preliminary design.

Electromagnetic Structure Design Study of Fault-Tolerant Interior Permanent Magnet Machines for Electric Vehicles Using Harmonic Order Shaping

  • Liu, Guohai;Zeng, Yu;Zhao, Wenxiang;Chen, Qian
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.561-569
    • /
    • 2016
  • Although pretty methods have been proposed to reduce torque ripple, they generally suffer from the decreased torque density. This paper will investigate the spoke-type interior permanent magnet (IPM) machine with shaping methods, including the sinusoidal (SIN), the inverse cosine (ICS), the sinusoidal with third harmonic (SIN+3rd), and the inverse cosine with third harmonic (ICS+3rd). In order to obtain low torque ripple and high torque density, the shaping method applied in rotor and stator at the same time, termed as the dual-shaping method, is proposed. This method is analytically derived and further confirmed by finite element method (FEM). It turns out that the ICS and ICS+3rd shaping methods are more suitable for outer rotors, while the SIN and the SIN+3rd shaping method should be used in inner stators. The original machine, the singular shaped machines and the dual-shaped machines on electromagnetic performances are compared for evaluation. The results verify that the dual-shaping method can improve torque density, whilst reducing torque ripple.

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM (반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계)

  • Kim, Young-Hyun;Lee, Jung-Ho;Kim, Nam-Hoon;Koo, Bon-Sam;Kim, Chan-Hui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.549-554
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM (반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계)

  • Kim, Young-Hyun;Yun, Tae-Won;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.414.1_415.1
    • /
    • 2009
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of SynRM according to the Rated Wattage using Response Surface Methodology (반응표면법을 이용한 동기형 릴럭턴스 전동기의 고토크밀도 및 저토크리플을 위한 용량별 최적설계)

  • Choi, Yun-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1777-1781
    • /
    • 2008
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Synchronous Reluctance Motor (SynRM) according to the rated wattage using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering of a number of interaction of design variables. The proposed procedure allows the definition of the rotor shape according to flux barrier number, starting from an existing motor or a preliminary design.

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of SynRM according to the Rated Wattage using Response Surface Methodology (반응표면법을 이용한 동기형 릴럭턴스 전동기의 고토크밀도 및 저토크리플을 위한 용량별 최적설계)

  • Choi, Yun-Chul;Mun, Sung-Ju;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.780-781
    • /
    • 2008
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Synchronous Reluctance Motor (SynRM) according to the rated wattage using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. The proposed procedure allows to define the rotor optimum shape for maximum torque density & minimum torque ripple starting from an existing motor or a preliminary design.

  • PDF

Design of Coaxial Magnetic Gear for Improvement of Torque Characteristics

  • Shin, H.M.;Chang, J.H.
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.393-398
    • /
    • 2014
  • This paper proposes new types of models that have coaxial magnetic gear (CMG) configurations to increase torque transmission capability. They have flux concentrating structures at the outer low speed rotor, and permanent magnets (PMs) are embedded in the space between stationary pole pieces. The torque performances of the proposed models are compared with those of a basic CMG model. The harmonic torque components due to air gap field harmonics are also analyzed to investigate the torque contribution of each harmonic by using finite element analysis (FEA) and the Maxwell stress tensor. The proposed CMG model is optimized to have high torque density with low torque ripples by response surface methodology (RSM). Compared to the basic CMG model, the proposed model has a huge increase in transmitted torque density, and is very advantageous in term of PM use.

Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Stator Shape Optimization for Electrical Motor Torque Density Improvement

  • Kim, Hae-Joong;Kim, Youn Hwan;Moon, Jae-Won
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.570-576
    • /
    • 2016
  • The shape optimization of the stator and the rotor is important for electrical motor design. Among many motor design parameters, the stator tooth and yoke width are a few of the determinants of noload back-EMF and load torque. In this study, we proposed an equivalent magnetic circuit of motor stator for efficient stator tooth and yoke width shape optimization. Using the proposed equivalent magnetic circuit, we found the optimal tooth and yoke width for minimal magnetic resistance. To verify if load torque is truly maximized for the optimal tooth and yoke width indicated by the proposed method, we performed finite element analysis (FEA) to calculate load torque for different tooth and yoke widths. From the study, we confirmed reliability and usability of the proposed equivalent magnetic circuit.