• Title/Summary/Keyword: Torque ripple

Search Result 655, Processing Time 0.028 seconds

Magnetic Circuit Design of BLDC Motor Using Response Surface Methodology (반응표면방법론을 이용한 BLDC 전동기의 자기회로 설계)

  • Lim, Yang-Soo;Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.904-906
    • /
    • 2001
  • This paper presents a magnetic circuit design procedure by using Response Surface Methodology(RSM) to determine initial and detail design parameters for reducing torque ripple in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variable Moreover, Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

  • PDF

Torque Ripple Minimization of a Switched Reluctance Motor Using Fuzzy Controller (퍼지제어기를 이용한 스위치드 릴럭턴스 모터의 토크 맥동 저감 기법)

  • Ro, Hak-Sueng;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.223-224
    • /
    • 2012
  • 본 논문은 퍼지 기반의 토크 분배 함수를 이용한 스위치드 릴럭턴스 모터의 토크 맥동 저감 기법을 제안한다. 일반적으로 스위치드 릴럭턴스 모터의 토크 맥동 저감 기법은 선행된 실험결과와 모터 파라미터의 변화에 대한 관측을 통해 오프라인으로 토크 분배 함수를 최적화한다. 이때, 모터의 높은 인덕턴스는 전류가 토크 분배 함수를 잘 추종하지 못하게 하여 의도치 않은 토크 맥동을 유발한다. 게다가 오프라인으로 토크 분배 함수를 계산하기 때문에 모델의 오차 및 변화에 따라 보상 성능이 저하 될 수 있다. 제안하는 제어기법은 퍼지 제어기를 이용하여 순시적으로 토크 분배 함수의 형상을 정정함으로써 토크 맥동을 저감한다. 시뮬레이션 결과를 통해 제안하는 제어기법의 우수성을 보인다.

  • PDF

Scheduling Design and Simulation of Software Components for EPS System based on AUTOSAR (AUTOSAR기반 EPS 시스템 소프트웨어 컴포넌트의 스케줄링 설계 및 시뮬레이션)

  • Park, Gwang-Min;Kum, Dae-Hyun;Son, Byeong-Jeom;Lee, Seong-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.539-545
    • /
    • 2010
  • Through the AUTOSAR methodology, the embedded software shall become more flexible, reusable, maintainable than ever. However, it is not mentioned about specific timing constraints of software components in AUTOSAR. There are a few basic principles for mapping runnable entities. At this point, AUTOSAR software design with optimal scheduling method is one of the enabling technologies in vehicle embedded system. This paper presents an approach based on mapping runnable entities and task scheduling design method for EPS (Electric Power Steering) software components, based on AUTOSAR. In addition, the experimental results of concurrent simulation show that the proposed scheduling technique and timing synchronization in the software component design can achieve the improved torque ripple performance and it well suited for EPS application software.

A Neutral-Voltage-Compensated Sensorless Control of Brushless DC Motor

  • Won, Chang-Hee;Song, Joong-Ho;Ick Choy;Lim, Myo-Taeg
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.59-64
    • /
    • 2003
  • This paper presents a new rotor position estimation method for brushless DC motors. The estimation error of the rotor position clearly provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral-voltage-based estimation method, which is structured as a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and control table measure, which can be used for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

An Analysis of Noise Characteristics According to the Excitation Method of SRM (SRM의 여자방식에 따른 소음특성 해석)

  • Mun, Jae-Won;O, Seok-Gyu;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.565-571
    • /
    • 2000
  • SRM has been applied to many commercial applications that require economical advantages and high performance abilities. But it has some drawbacks such as acoustic noise due to the abrupt change of mmf level when commutation. The abrupt change of a phase excitation produces mechanical stresses and it results in torque ripple and noise. This paper deals with an analysis of vibration and noise in SRM drive. Several types of excitation method are taken into account. The 1-phase and 2-phase excitation technique of short-pitch winding 2-phase excitation technique of full-pitch winding are tested. The acoustic noise is reduced remarkably through the sequential phase excitation in the 2-phase excitation. It is because that the scheme reduces abrupt change of excitation level by distributed balanced excitation with free-wheeling during commutation.

  • PDF

An Analysis of Noise Characteristics according to PWM Method in 2-Phase Conduction Method (2상 통전 방식에서의 PWM 방식에 따른 소음 특성 분석)

  • Oh, Jae-Yoon;Cheong, Dal-Ho;Kim, Jung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2632-2634
    • /
    • 1999
  • In this paper, we analyze the characteristics of Motor Noise according to PWM method, especially in the case of 2-phase conduction method. There are two types of PWM methods used usually. One is Lower-PWM and the other is Upper&Lower PWM. Because there is a difference between freewheeling path of both methods, Current profiles of two methods are different. This makes the difference of Torque Ripple and so difference of Noise Performance. In this paper, the path will be analyzed and the comparison of Noise performance of two types of PWM methods will be showed by experiment results.

  • PDF

Analysis of High Speed Linear Motor Feed System Characteristics (리니어모터 응용 고속 이송시스템 특성분석에 관한 연구)

  • 유송민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.993-996
    • /
    • 2000
  • A brushless linear motor is suitable for a high-accuracy servo mechanism. It is also suitable for operation with higher speed and precision. Since it does not involve some sort of mechanical coupling, linear driving force can be applied directly. Basic models including magetomotive force and electromotive forces are introduced and simplified. Both conventional PID and fuzzy controllers are implemented and performance results using those controllers are compared. Along with better simulated performance observed using fuzzy controller, further fabrication is to be included with various empirical results. Several system operational characteristics have been observed. Typical nonlinearities as friction, cogging and torque or thrust ripple that might deteriorate system performance would be tackled using presumably effective method such as neural network based learning controller.

  • PDF

Advanced Brushless DC Motor Drive without Position Sensor for Home Appliances

  • Kim, Dae-Kyong;So, Ji-Young;Jung, Dong-Hwa
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • This paper describes advanced brushless DC motor drive without position sensor for home appliances with compressor to reduce the pulsating currents and vibration. The proposed method limits the motor currents during starting period and reduces commutation torque ripple during sensorless operating period. Experimental results show that the proposed method implemented in an inverter for a BLDC motor driven compressor considerably reduces not only the pulsating currents but also vibration of the home appliances.

Development of a Switched Reluctance Motor-based Electric AC Compressor Drive for HEV/EV Applications

  • Kim, Jaehyuck;Jeong, Yong-Hoe;Jeon, Yong-Hee;Kang, Jun-Ho;Lee, Seunghun;Park, Jang-Yeop
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.282-290
    • /
    • 2014
  • This paper discusses the development of a 3.5 kW switched reluctance motor (SRM)-based electric air-conditioning (AC) compressor, focusing primarily on the design aspects of the SRM and the integrated controller. In addition to the increased price of rare-earth magnets, SRM's operation capability at high speed and high temperature makes the SRM a viable alternative to the permanent magnet motor for electrically driven automotive air conditioning compressors. A compact and energy efficient scroll compressor is designed and constructed. Two feasible SRM topologies are considered, in terms of efficiency, torque ripple, and acoustic noise. Compact drive electronics are designed and employed to drive the SRM-based compressor. The static and dynamic performance is validated by simulation and experiment.

Optimal Switching Position of Two-Phase Brushless DC Motor with the Consideration of Vibration (진동을 고려한 2상 BLDC 모터의 최적 스위칭 위치)

  • 정중기;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.465-470
    • /
    • 2001
  • Two-phase BLDC(brushless DC) motor has larger torque ripple than three-phase BLDC motor because of its unique skeleton-type structure. An electronic switching mechanism to change the current-direction of the BLDC motor can be a source of vibration as well as unbalanced rotor weight. A proper switching timing which makes less vibrations was considered by changing the position of sensing element around the center of rotation. Also, the current of the motor was measured for the calculation of the motor efficiency. From the vibration test results and with the consideration of the motor efficiency, an optimal switching position of the Hall sensor was found.

  • PDF