• Title/Summary/Keyword: Trackbed

Search Result 47, Processing Time 0.027 seconds

Analysis of Permanent Deformations in Asphalt Mixtures for Design of Asphalt Trackbed Foundation (철도 노반 설계를 위한 아스팔트 혼합물의 영구변형 특성 분석)

  • Lim, Yujin;Lee, JinWook;Lee, SeongHyeok;Lee, ByeongSik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • In this study, permanent deformation of asphalt trackbed was investigated by performing repetitive load test on specimen made with dense graded asphalt mixture that was specially prepared for asphalt trackbed foundation. The obtained test results were compared with those computed from the prediction model proposed by AASHTO 2002, called MEPDG. No prediction model adaptable only for permanent deformation of the asphalt trackbed foundation has yet been developed, so the prediction model by AASHTO was adapted in this study to simulate permanent deformation of trackbed foundations in asphalt slab track and in ballasted asphalt track. In order to simulate permanent deformation, a finite element analysis was performed to obtain stresses generated in trackbed due to wheel load. It was found that the predicted permanent deformation was much smaller than the anticipated deformation and that the asphalt track could be stable during the service life of the structure.

Dynamic Response Characteristics for Two-layered Trackbed Structure by Train Load (열차하중에 의한 이층노반구조의 동적 응답특성)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • It is difficult to clarify the dynamic response characteristics of trackbed because of various environmental conditions. However, track irregularity be affected by ununiformed bearing capacity and its dynamic response, study for dynamic response characteristics is required to investigate the cause of track irregularity and countermeasure. In this paper, the response variation for dominant frequency and vibration energy by trackbed structure and material stiffness are investigated. The analysis section is two layered ground structure that is comprised of trackbed and soft rock. This structure amplifies the energy of dominant range easily. It is evaluated to affect track irregularity on comparing by theoritical, analytical and empirical method for dynamic response of the trackbed.

Stiffness Modulus Comparison in Trackbed Foundation Soil

  • Kim, Daesung;Cho, Hojin;Park, Jaebeom;Lim, Yujin
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.50-54
    • /
    • 2015
  • The primary function of the trackbed in a conventional railway track system is to decrease the stresses in the subgrade to be in an acceptable level. A properly designed trackbed layer performs this task adequately. Many design procedures have used assumed and/or are based on critical stiffness values of the layers obtained mostly in the field to calculate an appropriate thickness of the sublayers of the trackbed foundation. However, those stiffness values do not consider strain levels clearly and precisely in the layers. This study proposes a method of computation of stiffness that can handle with strain level in the layers of the trackbed foundation in order to provide properly selected design values of the stiffness of the layers. The shear modulus values are dependent on shear strain level so that the strain levels generated in the subgrade in the trackbed under wheel loading and below plate of Repeated Plate Bearing Test (RPBT) are investigated by finite element analysis program ABAQUS and PLAXIS programs. The strain levels generated in the subgrade from RPBT are compared to those values from RC (Resonant Column) test after some consideration of strain levels and stress consideration. For comparison of shear modulus G obtained from RC test and stiffness moduli $E_{v2}$ obtained from RPBT in the field, many numbers of mid-size RC tests in laboratory and RPBT in field were performed extensively. It was found in this study that there is a big difference in stiffness modulus when the converted $E_{v2}$ values were compared to those values of RC test. It is verified in this study that it is necessary to use precise and increased loading steps to construct nonlinear curves from RPBT in order to get correct $E_{v2}$ values in proper strain levels.

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

Research for Assessing Railway Trackbed Condition (궤도하부구조의 상태 평가를 위한 연구)

  • Kim Dae-Sang;Lee Su-Hyung;Kang Seung-Goo;Son Kang-Hee
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.980-986
    • /
    • 2004
  • So far systematic and reliable methods for the investigation of track substructure (ballast and subgrade) are not developed yet. This study presents the applicability of GPR (Ground Penetrating Radar) and PBS (Portable Ballast Sampler) to the evaluation of railway trackbed conditions. Including FWD (Falling Weight Deflectometer) often used to evaluate the subsurface conditions of pavement, the standard system for assessing trackbed conditions will be developed in the future.

  • PDF

Analytical Study of the Vibration Attenuation with respect to Trackbed Systems

  • Jung, WooYoung;Lee, SeongHyeok;Lee, JinWook;Kwon, MinHo;Ju, BuSeog
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.40-45
    • /
    • 2014
  • The vibration-attenuation was quantitatively compared by 3-Dimensional finite element analysis using ABAQUS, with respect to the change of the type of trackbed systems. Most common trackbed materials, including ballast and concrete were applied to the track structure, and the train-speed was set as 300km/h as Korea Train eXpress (KTX). The result of current study revealed that the ballast showed the most effective material for the vibration attenuation.

Study on the Appropriateness of Track Maintenance Works through the Evaluation of Trackbed Conditions (도상 및 노반상태 평가를 통한 궤도유지보수작업의 적정성 연구)

  • Kim, Dae-Sang;Kwon, Soon-Sup;Lee, Su-Hyung;Hwang, Seon-Keun;Park, Tae-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.334-341
    • /
    • 2008
  • Ballast track needs maintenance works because it is supported by the compressible trackbed and subgrade layers. Maintenance works are essential to secure riding comfort and extend the life cycle of it. The necessities of maintenance works are determined from track irregularities measured by EM120. Track irregularities is the results of the track deformation. Therefore, it is natural to evaluate the cause of it. This paper focuses on the points the track irregularities come from the trackbed and the subgrade. Nondestructive techniques, such as Ground Penetrating Radar (GPR) and Portable Falling Weight Deflectometer (PFWD) are applied to evaluate the trackbed conditions, ballast layer thickness and vertical track stiffness, in the test section 500m long of Gyungbu line. The trackbed investigation results are compared with the track irregularities measured by EM120 and maintenance works. Conclusively, it was found that some maintenance works were unnecessary on the test section.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Application of a Simple Non Destructive Test Method to Obtain the Dynamic Modulus of Asphalt Mixtures used for an Asphalt Trackbed Foundation (아스팔트 노반 설계를 위한 간이 비파괴시험에 의한 동탄성계수 취득방법 적합성 분석)

  • Lim, Yujin;Lee, SeongHyeok;Lee, JinWook;Lee, ByeongSik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2014
  • An asphalt trackbed is to be adapted in Korea to provide better bearing capacity and stability to the track and a comfortable ride to passengers. The dynamic modulus of Hot Mixed Asphalt(HMA) mixes is a critical design input parameter to determine the thickness of the asphalt trackbed. In this study, impact resonant tests and ultrasonic test methods are designed to obtain the dynamic modulus. These test methods are also verified to check the etffectiveness of constructing a master curve of the dynamic modulus over a wide range of frequencies and temperatures. The test results are compared to the computed dynamic modulus using AASHTO 2002 and the KPRP's proposed model. It can be concluded that the proposed simple test methods are effective to obtain the dynamic moduli of the asphalt mixes for the design of an asphalt trackbed foundation.

Deformation Measurement of Roadbed in Full-scale Field Test to Determine an Optimum Trackbed of High-Speed Railway (고속철도 노반의 최적단면 결정을 위한 실대형 모형시험에서의 노반 변형 계측)

  • Jung, Young-Hoon;Kim, Hak-Sung;Byeon, Bo-Hyeon;Lee, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2821-2829
    • /
    • 2011
  • Since the KTX was in operation in 2004, a number of researches on increasing the train speed have been conducted. Currently, the Honam High-speed train system is designed for the operation velocity of 350km/h. The societal demand expects higher operation speed, whereas the existing construction method and design specification are questioned in the KTX operation in the velocity over 350 km/h. In this study, a full-scale model test was conducted to obtain the preliminary data that is necessary to understand deformation characteristics of the reinforced road bed and the subgrade layers. In the full-scale model test, direct arrival seismic tests, crosshole seimic test, in-situ bender element test and sensing bar test were employed to measure the stiffness and deformation of the trackbed. The systematic analysis on the different set of measurements enhances the understanding of the behavior of the trackbed.

  • PDF