• Title/Summary/Keyword: Traction Control System

Search Result 257, Processing Time 0.028 seconds

Development of EMU Traction Control System (전동차 추진제어장치 개발)

  • 이일호;이인석;정은성;한성수;배본호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.659-665
    • /
    • 2000
  • EMU Traction Control System has been largely relied on foreign technology until now. In this time, this system is developed by own local technology according to national technology development policy during 3 years. In this paper, the new developed Traction Control System of EMU and its testing results are introduced. The Traction Control System is consisted latest IGBT switching elements and its traction control algorithm is realized by the state-of-the-art technology, vector control. The system is fully tested in various conditions and the quality is well verified in those tests.

  • PDF

DEVELOPMENT OF A NETWORK-BASED TRACTION CONTROL SYSTEM, VALIDATION OF ITS TRACTION CONTROL ALGORITHM AND EVALUATION OF ITS PERFORMANCE USING NET-HILS

  • Ryu, J.;Yoon, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.687-695
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units(ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electric throttle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

Traction Control of Automobiles using a Disturbance Observer with the Approach of Sliding Mode Control

  • Mubin, M.;Moroda, K.;Tashiro, M.;Ouchi, S.;Anabuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1738-1743
    • /
    • 2004
  • This paper presents an automobile traction control system by using a sliding mode controller with disturbance observer for estimating the car-body speed. First, we show that the control system, which combines an automobile system and a disturbance observer, can be divided into a controllable system and an estimated one. And, we found out that the effect of the traction control and ABS depends on the air resistance of the car. Then, the sliding mode control system is designed using the obtained combined system. And finally, the stability of this control system is verified by simulation and it shows a very satisfactory results.

  • PDF

Development of propulsion system for the Urban Transit Maglev System (도시형 자기부상열차 적용을 위한 추진제어장치의 개발)

  • 이은규;송영신;최재호
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.440-445
    • /
    • 2002
  • In this paper, traction system for urban transit maglev system is proposed. Using vector control strategy to control magnitude and frequency of output voltage transiently is general. But in case of traction system for railway vehicle, it is impossible that adapt vector control because there is one-pulse mode in a high speed region. So this paper proposes the control strategy using vector control in a low speed region and slip frequency control in a high speed region. And also proposes overmodulation method that makes to change in one-pulse mode softly. The performance of traction system will be verified by simulation results using ACSL.

  • PDF

Position Control Scheme of Rail Traction System Based on the BLAC Motor With Disturbance Observer (외란 관측기 기반의 BLAC 전동기로 구동하는 레일 트랙션 시스템의 위치 제어)

  • Cho, Kiwan;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • This study presents an overhang-type rail traction system using dual brushless AC (BLAC) motors with hall sensors. For an accurate position and moving length control of the designed rail traction system, instantaneous position controller using speed reference model and modified disturbance observer for BLAC motor with hall sensor are proposed. The presented speed reference model is designed to satisfy the required performance of 200 mm/s with proper acceleration and deceleration slopes to reduce mechanical vibration. Through the instantaneous speed reference model, instantaneous position and speed errors can be compensated together. Furthermore, the modified disturbance observer for BLAC motors with low-resolution hall sensors can improve the torque and speed control performance. The proposed disturbance observer is based on an actual motor speed. However, the feedback speed information of the hall sensor is not enough for use in the low-speed region. The practical adopted disturbance observer uses an activation speed band to the actual torque controller of the designed rail traction system. The proposed position control scheme is verified by the MATLAB-Simulink model and a practical manufactured traction system. In the computer simulation and experiments, the proposed position control scheme shows advanced control performance.

A study on the re-adhesion control algorithm of railway traction (도시철도차량 인버터 재점착제어기법 연구)

  • Kim, Gil-Dong;Han, Young-Jae;Park, Hyun-June;Lee, Sa-young
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.1
    • /
    • pp.56-66
    • /
    • 1999
  • This purpose of this paper is to perform the readhesion control algorithm of the urban railway traction. A study on readhesion control algorithm is done for the adhesion system. This system has all characteristics of the voltage source converter by a process ability to regenerate power. The traction motor is controlled by IGBT inverter. The test equipment composes traction motor, torque-meter, clutch, and a tubular type of interia mass.

  • PDF

A Study on the Adhesion Control using the Estimated Adhesion for Improving Traction Performance (견인능력 향상을 위한 추정점착력을 이용한 점착제어기법에 관한 연구)

  • Seo, Gwang-Deok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.709-714
    • /
    • 1999
  • This paper is focused on the adhesion control method to improve traction efficiency using the estimated adhesion for railway propulsion system. Recently, the wheel slippery is frequently occurred due to light weight of train and power increasement of traction parts. This phenomenon occurs a traction loss and a poor ride comport. Therefore, the adhesion control which is able to prevent the slippery and to control the traction on a maximum adhesion is absolutely needed. This paper introduces typical methods for adhesion control and proposes two novel adhesion methods using the estimated adhesion.

  • PDF

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF