• Title/Summary/Keyword: Tradescantia assay

Search Result 19, Processing Time 0.029 seconds

Study on the genotoxicity of soi1 leachate from two polluted sites in Cheongju with Tradescantia-micronuclus assay (자주달개비 미세핵 분석법을 이용한 청주공단주변 토양침출수의 유전독성 평가)

  • Kim Jin Gyu;Lee Byeong Heon;Sin Hae Sik;Lee Jin Hong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.119-122
    • /
    • 2002
  • Soil contaminants are common in industrialized sites, They can affect directly soil and indirectly ground water and food. Soil mutagens and carcinogens are of great interest due to their potentially hazardous effects on human health. The aim of this study was to monitor the genotoxicity of contaminated soils, Soil leachates were collected from two polluted sites and one control site in Cheongju. Tradescantia BNL 4430 clone was used as experimental matierials. Chromosomal damages induced by soil leachates were detected by the Tradescantia-micronucleus assay. It is known from the result that Tradescantia-micronucleus assay is an excellent botanical tool for detection of biological risk due to environmental toxicants.

  • PDF

Biomonitoring the Genotoxicity of Environmental Pollutants Using the Tradescantia Bioassay (환경 중 유전독성물질 검색을 위한 자주달개비 생물검정 기법의 적용연구)

  • 신해식
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2004.05a
    • /
    • pp.47-60
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public from agents that can cause mutation and/or cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

Assessment of Environmental Pollution with Tradescantia Bioassays (자주달개비 생물검정 기법을 이용한 환경오염 평가)

  • Kim Jin Gyu;Sin Hae Sik
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.1-15
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public firom agents that can cause mutation anuor cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

Study on the Biological Effects of TSP Collected from the Subway Station with Tradescantia Bioassay (지하철 시설내 부유먼지에 함유된 돌연변이원의 생물학적 영향 평가)

  • Kim, Jin-Kyu;Shin, Hae-Shik;Lee, Jeong-Joo;Kim, Kyun;Lee, Jin-Hong
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.245-252
    • /
    • 2002
  • Airborne pollutants in the subway facilities can be potentially harmful to the health of passengers. This study was designed to examine whether the suspended particulates have mutagenic or carcinogenic effect on the plant cell systems. Total suspended particulates were collected with a high volume air sampler, in the entrance, the waiting room, and the platform of each subway station. The biological end -points in this experiment were the pink mutations in stamen hairs and micronuclei in the pollen mother cells of Tradescantia. The exudates were collected by shaking the filter papers from the sampler in distilled water for 24 hours. All the plant cuttings exposed to the exudates resulted in positive responses. The micronucleus assay proved more reliable and sensitive to the test than the stamen hair assay. The results indicate that the air particulates can give an adverse effect on the health of subway passengers.

Genotoxicity of Heavy Metals among the Particulates in the Working Environment as Assessed by Tradescantia-Micronucleus (Trad-MCN) Assay (자주달개비 미세핵 분석법을 이용한 작업환경내 총 먼지 중 수용성 추출물의 유전독성 평가)

  • Shin, Hae-Shik;Kim, Jin-Kyu;Lee, Jae-Hwan;Hwang, Kap-Sung;Kim, Kyun;Lee, Jeong-Joo;Lee, Jin-Hong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.639-646
    • /
    • 2003
  • In this study, we evaluated genotoxicity of heavy metals among particulates with Tradescantia-micronucleus (Trad-MCN) assay in the various working environment. In a synthetic fiber factory and a rubber factory, chromium concentration was higher than any other heavy metals. On the other hand, nickel concentration was the highest in a semi-conductor factory. The difference in genotoxicity among the working environment was statistically significant as Trad-MCN frequencies were 4.07 $\pm$0.35 MCN/100 tetrads (p< 0.01) for the synthetic fiber factory,5.73 $\pm$0.81 MCN/100 tetrads (p< 0.01) for the rubber factory, and 15.60$\pm$2.58 (p< 0.01) (p< 0.001) for the semi -conductor factory. As a result, heavy metals among particulates in the working environment can be considered to have hazardous potential to human health, although they cannot directly induce DNA damage to the workers in the working environments.

The Comparison of Volatile Organic Compounds (VOCs) Analysis and Tradescantia Micronucleus (Trad-MCN) Bioassay for Evaluation of Hazardous Materials in Chemical Workplace Field (화학공장 실내 작업장에서의 유해물질 평가를 위한 VOC 분석법과 자주달개비 미세핵 분석법의 비교)

  • Heo, Gwi Suk;Lee, Jae Hwan;Shin, Hae Shik;Kim, Jin Kyu;Lee, Young Yup;Lee, Dai Woon;Lee, Jin Hong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • This research examined the presence of hazardous materials in chemical workplace field using an integrated chemical/biological monitoring. Chemical workplace field air for volatile organic compounds (VOCs) analysis was collected using a collection tube packed with Tena.x TA adsorbent 400 mg. Workplace field air samples were analyzed by gas chromatography/mass spectrometry (GC/MS). Simultaneously, Tradescantia BNL 4430 clone was exposed in situ to monitor hazardous materials in chemical workplace field. GC/MS analysis showed the presence of various VOCs such as trichloroethylene, toluene, ethylbenzene, (m,p,o)-xylenes, styrene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene. The results showed that in situ monitoring of VOCs with the Tradescantia-micronucleus (Trad-MCN) assay gave positive results in chemical workplace field and negative response at outdoor air. In conclusion, inhalation of these field air by workers may affect chronic demage to their health by inducing micronuclei formation in Tradescantia pollen mother cells. The combination of chemical/biological monitoring is very effective to evaluate hazardous materials in workplace field and can be alternatively used for screening hazardous materials.

Effects of Natural Extracts on the Radiation-induced Pink Mutations in Tradescantia Stamen Hair Cells

  • Kim, Jin-Kyu;Kim, Yeon-Ku;Lee, Byoung-Hun;Lee, Young-Il;Shin, Hae-Shick
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.522-528
    • /
    • 1999
  • The effect of a water-soluble extract from natural materials on radiation-induced mutations was studied by means of TSH assay in Tradescantia 4430 stamen hair cells. Inflorescence cuttings, with or without pretreatments of natural extracts for 3 hours, were exposed to 1 Gy of gamma ray. Comparisons were made on the basis of pooled data during the peak interval between the mean pink mutation frequencies of the experimental groups. Pretreatments of FB or FB-I resulted in about two-fold increases of the pink mutation frequencies, compared to those of the control group. Synergism between certain fractions and radiation was a possible cause of the increased DNA damage. FB and FB-I had a radiosensitizing effects on the pink mutations in Tradescantia 4430 stamen hair cells (p<0.001). On the other hand, the extract PP in a proper concentration significantly reduced the pink mutation frequencies (p<0.05). The result means that PP has a protective effect on the radiation-induced cell damage.

  • PDF

Antioxidant and α-Glucosidase Inhibitory Activities of Tradescantia pallida (Rose) Hunt Leaf Extract and Fractions (팔리다자주닭개비 잎 추출물 및 분획물의 항산화 및 α-글루코시다아제 저해 활성)

  • Kim, Ju Sung;Kim, Kyeoung Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.222-227
    • /
    • 2016
  • Background: The biological activities of Tradescantia pallida grown in Korea have not been well determined, thus the aim of this study was to investigate the possibility of using it as a medicinal plant. Methods and Results: To investigate the antioxidant activity, ${\alpha}$-glucosidase inhibitory effect and antimicrobial activity of T. pallida, we performed the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. This assay for T. pallida leaf extract showed the highest antioxidant activity for the ethyl acetate fraction ($RC_{50}=14.55{\pm}0.16{\mu}g/m{\ell}$ and Abs = 0.613 at $300{\mu}g$). Further, the ethyl acetate fraction exhibited higher ${\alpha}$-glucosidase inhibitory effect with an $IC_{50}$ value of $14.1{\pm}0.1{\mu}g/m{\ell}$ and showed antimicrobial activity against gram positive bacteria (minimum inhibitory concentration = $1,000{\mu}g/m{\ell}$). Conclusions: The ethyl acetate fraction of the crude methanol extract of T. pallida showed remarkable antioxidant activity, ${\alpha}$-glucosidase inhibitory effects and antimicrobial activity. These activities might be related to the flavonoid content in the T. pallida leaf extract.