• Title/Summary/Keyword: Train wind pressure

Search Result 59, Processing Time 0.057 seconds

Analysis on the Train-wind Pressure applied to Screen Door in Island-type Platform of Subway (지하철의 섬식 정거장에 설치된 스크린도어에 가해지는 열차풍압 해석)

  • Kim, Jung-Yup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.138-141
    • /
    • 2008
  • The screen doors installed in the station of subway are subject to the train-wind pressure caused by the operation of trains. The train-wind pressure has to be correctly estimated for the design of safe structure of screen doors. As three-dimensional numerical flow analysis technology has been significantly developed, the analysis on the train-wind pressure with diverse variables such as train specifications, train speed, tunnel and station configurations, and blockage ratio can be effectively carried out with three-dimensional numerical method. In this study, computational analysis of train-induced wind in a subway tunnel employing the screen doors are carried out by using the three-dimensional numerical method with the model of the moving boundary for the run of trains. While the numerical analysis of train-wind pressure was applied on the one island-type station in the Seoul Subway Line 2, maximum pressure of 494 Pa was estimated on the screen door when two trains pass each other at the speed of 80km/h in the platform.

  • PDF

Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind

  • Wang, Yujing;Xia, He;Guo, Weiwei;Zhang, Nan;Wang, Shaoqin
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2018
  • To investigate the characteristics of the combined wind field produced by the natural wind field and the train-induced wind field on the bridge, the aerodynamic models of train and bridge are established and the overset mesh technology is applied to simulate the movement of high-speed train. Based on ten study cases with various crosswind velocities of 0~20 m/s and train speeds of 200~350 km/h, the distributions of combined wind velocities at monitoring points around the train and the pressure on the car-body surface are analyzed. Meanwhile, the difference between the train-induced wind fields calculated by static train model and moving train model is compared. The results show that under non-crosswind condition, the train-induced wind velocity increases with the train speed while decreases with the distance to the train. Under the crosswind, the combined wind velocity is mainly controlled by the crosswind, and slightly increases with the train speed. In the combined wind field, the peak pressure zone on the headstock surface moves from the nose area to the windward side with the increase of wind velocity. The moving train model ismore applicable in analyzing the train induced wind field.

Evaluation of the Structural Stability of Platform Screen Door (PSD) due to Train Wind Pressure (열차 진입 시 풍압에 의한 완전 밀폐형 승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.594-600
    • /
    • 2006
  • In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the platform screen door due to train wind pressure. Fluent 6.0 was used to calculate the train wind pressure, and Ansys 10.0 was used to evaluate the structural stability of platform screen door due to train wind pressure. Transient analysis was used to check the design requirements of platform screen door, and quasi-static analysis was introduced to save the calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

A Study on Wind Pressure inside Cheonan High Speed Train Station (고속전철 천안역사 내부의 풍압연구)

  • Won Chan-Shik;Kim Sa Ryang;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.843-846
    • /
    • 2002
  • Unlike ordinary train, the HST(High Speed Train) is operated at a very high speed, which may cause pressure transient problems when the HST is passing through a station. In the present study, the wind pressure caused by the passing HST was measured in the Cheonan HST station and compared with the numerical simulations. For the measurement, the HST was passing through the station at speeds of 240 km/h north bound and 150 km/h south bound. MEMS based differential pressure transducers are used to measure pressure variation at various locations in the station. It is shown from the results that measured data are in good agreement with CFD simulation with moving mesh technique for the train movement. With the present validation of CFD simulation, the CFD simulation may effectively aid the design of future HST station.

  • PDF

An Experimental Study on the Characteristics of Train-Wind in Underground Shopping Center Connected to Subway Station (지하도 상가와 지하 역사 연계구에서 열차풍 발생 특성에 관한 실험적 연구)

  • Hwang, In-Ju;Lee, Hong-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.82-87
    • /
    • 2005
  • The characteristics of train-wind in the underground shopping center(UGSC) connected to subway station is investigated by field measurement for the case of train movement such as arrival and departure, etc. Also air curtain installed at the pass way between underground shopping center and subway station were considered as the parameter in order to analysis the effect on indoor air quality and thermal condition. The measurement data such as velocity, relative humidity, wind-pressure were plotted as quantity variation with time scale. The train-wind affected wind velocity, air pressure and relative humidity at the connecting area of underground shopping center and subway station, and the variation was about 4.5 m/s, 8%, 40 Pa. Also the result showed that the air curtain is not proper to reduce influence of train-wind

  • PDF

Wind Pressure Transients in the Tunnel inside a Station Caused by a Passing High Speed Train

  • Nahmkeon Hur;Kim, Sa-Ryang;Kim, Wook;Lee, Sangyeul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1614-1622
    • /
    • 2004
  • When a High Speed Train (HST) passes through a station with no stop, effects of wind pressure transients caused by this passing train have to be considered for the safety of passengers on the platform and for the possible structural safety problems as well. In Gwangmyeong and Daejeon stations of the Korean high speed railroad, tunnels inside stations for the passing train are proposed to reduce the noise and wind pressure transients to the passengers on the platform. In the present study, transient 3-D full Navier-Stokes solutions with moving mesh to implement train movement are obtained and compared with the results obtained by the towing tank experiment. Investigations on flow phenomena for various train speeds and design modifications are also performed.

Investigation on the Safety of TTX in Strong Cross wind (강한 측풍에 대한 한국형 고속 틸팅 열차의 안전성 고찰)

  • Kim, Duck-Young;Yun, Su-Hwan;Ha, Jong-Soo;Rho, Joo-Hyun;Kwon, Hyeok-Bin;Ko, Tae-Hwan;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.271-277
    • /
    • 2007
  • The Korean Tilting Train eXpress (TTX) development program is in progress for the purpose of running speed or passenger's comfort improvement at the curved track. However, the speed up and light weight of train make poor the dynamic safety of the TTX in strong cross wind. In this paper, 3-dimensional numerical analysis on the flow field around the TTX under strong cross wind is performed for each operating condition, such as the train speed, cross wind speed, tilting/nontilting condition, and so on. Due to the strong cross wind, the pressure distribution around the train becomes asymmetric, especially at the leading car. Asymmetrical pressure distribution causes the side force and strong unstability. The side force on the train is proportional to the train speed and cross wind speed. Based on the numerical results, the overturning coefficients are predicted for investigation of the train stability, and all of them are less than the critical value, 0.9. The results in this study would be a good data for providing importance to judgement of cross wind safety of TTX.

Modelling the multi-physics of wind-blown sand impacts on high-speed train

  • Zhang, Yani;Jiang, Chen;Zhan, Xuhe
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.487-499
    • /
    • 2021
  • The wind-blown sand effect on the high-speed train is investigated. Unsteady RANS equation and the SST k-ω turbulent model coupled with the discrete phase model (DPM) are utilized to simulate the two-phase of air-sand. Sand impact force is calculated based on the Hertzian impact theory. The different cases, including various wind velocity, train speed, sand particle diameter, were simulated. The train's flow field characteristics and the sand impact force were analyzed. The results show that the sand environment makes the pressure increase under different wind velocity and train speed situations. Sand impact force increases with the increasing train speed and sand particle diameter under the same particle mass flow rate. The train aerodynamic force connected with sand impact force when the train running in the wind-sand environment were compared with the aerodynamic force when the train running in the pure wind environment. The results show that the head car longitudinal force increase with wind speed increasing. When the crosswind speed is larger than 35m/s, the effect of the wind- sand environment on the train increases obviously. The longitudinal force of head car increases 23% and lateral force of tail increases 12% comparing to the pure wind environment. The sand concentration in air is the most important factor which influences the sand impact force on the train.

Parametric Study of the Effects of Train Wind on Running Stability (열차풍 효과가 고속열차 주행안정성에 미치는 파라메타 연구)

  • Nam, Seong-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2519-2523
    • /
    • 2008
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed will save the construction cost. However the shortening the distance between track centers may cause the stability problems due to higher wind pressure. Therefore the extensive technical review and aerodynamical study should be performed to determine the adequate distance between track centers. In this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. We conducted the parametric study of the effects of train wind on the running stability.

  • PDF