• 제목/요약/키워드: Trajectory Design

검색결과 724건 처리시간 0.032초

모바일 기기의 사용자 인터페이스 설계 도구로서 Trajectory Mapping 방법에 관한 연구 (A Study of Trajectory Mapping Method as a User Interface Design Tool for Mobile Devices)

  • 이석원;명노해
    • 산업공학
    • /
    • 제22권1호
    • /
    • pp.17-25
    • /
    • 2009
  • In mobile device's user interface, menu organization is very important as well as menu structure because small display of mobile device. Menu items should be organized based on user knowledge structure to design user-centered interface. Traditionally, MDS (Multidimensional Scaling) have been most often used to expose users' perceived organization of menu items. But, information that MDS reveals is just relative spatial location of concepts and not relevant to concepts connection. Unlike MDS, Trajectory Mapping explicitly finds users' cognitive links between perceived concepts. This study proposes a Trajectory Mapping technique for eliciting knowledge structure, especially a set of cognitive pathways linking menu items, from end user. With twelve participants, MDS and Trajectory Mapping were conducted using cellular phone's menu items. And user knowledge structure was analyzed through Visual Concept Map that combination of results of MDS and Trajectory Mapping. After then, menu items were organized according to users' perceived organization. Empirical usability test was also conducted. The results of usability test showed that usability, in terms of task performance time, number of errors, and satisfaction, for newly organized interface was significantly improved compare to original interface. The methodology of this study is expected to be applicable to design a user-centered interface. In other words, Trajectory Mapping technique can be used as a design tool of user interface for imposing user knowledge structure on the interface.

병렬로봇의 설계 공차가 궤적 정밀도에 미치는 영향 분석 (The Analysis of Trajectory Tracking Error Caused by the Tolerance of the Design Parameters of a Parallel Kinematic Manipulator)

  • 박찬훈;박동일;김두형
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.248-255
    • /
    • 2016
  • Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.

우주비행체의 대기권 재진입 기준궤적 해석 (Reference Trajectory Analysis of Atmosphere Re-entry for Space Vehicle)

  • 이대우;조겸래
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.111-118
    • /
    • 2000
  • The design of reference trajectory with respect to drag acceleration is necessary to decelerate from hypersonic speed safely after atmosphere re-entry of space vehicle. The re-entry guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of 6 trajectory constraints during the re-entry flight. This reference drag acceleration profile can be considered as the reference trajectory. The cost function is composed of the accumulated total heating on vehicle due to the reduction of weight. And a regularization is needed to prevent optimal drag profile from varying too fast and achieve realized trajectory. This paper shows the relations between velocity, drag acceleration and altitude in drag acceleration profile, and how to determine the reference trajectory.

  • PDF

백스테핑을 이용한 이동 로봇의 경로 제어기의 설계 (Trajectory Controller Design of Mobile Robot Systems based on Back-stepping Procedure)

  • 이기철;이성렬;류신형;고재원;박민용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.23-26
    • /
    • 2000
  • Generally, the wheel-driven mobile robot systems, by their structural property, have nonholonomic constraints. These constraints are not integrable and cannot be written as time derivatives of some functions with respect to the generalized coordinates. Hence, nonlinear approaches are required to solve the problems. In this paper, the trajectory controller of wheeled mobile robot systems is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation, the trajectory controller is applied to differentially driven robot system and car-like mobile robot system on the assumption that the trajectory planner be given.

  • PDF

Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure

  • Jaewon Kho;Lee, Kicheol;Park, Mignon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1618-1621
    • /
    • 2002
  • In this paper, the constructive modeling procedure of nonholonomic mobile robot system is carried out with the help of controllability Lie algebra used in differential geometry field, and their geometrical properties are also analyzed. And, a new trajectory controller is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation the trajectory controller is applied to differentially driven mobile robot system on the assumption that the trajectory planner be given.

  • PDF

백 스테핑을 이용한 이동 로봇의 경로 제어기의 설계 (Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure)

  • 이기철;고재원;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2787-2789
    • /
    • 2000
  • In this paper. the constructive modeling procedure of nonholonomic mobile robot system is carried out with the help of controllability Lie algebra used in differential geometry field. and their geometrical properties are also analyzed. And, a new trajectory controller is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation the trajectory controller is applied to differentially driven robot system on the assumption that the trajectory planner be given.

  • PDF

Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.331-342
    • /
    • 2017
  • To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

타워워커: 보행 경로 최적화와 극대화된 다리 길이를 통한 속도 향상 (TowerWalker: Speed improvement through trajectory optimization and maximally elongated leg)

  • 남지원
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.389-396
    • /
    • 2016
  • In order to maximize the speed of Theo Jansen Mechanism in an given design space and prototyping material, the trajectory path was maximized according to several literature reviews, and the lower leg was elongated maximally in order to minimize the shift between support phase and transfer phase.

  • PDF

수송기계구조물의 대기권 재진입 기준궤도 설계 (Reference Trajectory Design for Atmosphere Re-entry of Transportation Mechanical Structure)

  • 박중현;엄위섭
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.67-73
    • /
    • 2003
  • The entry guidance design involves trajectory optimization and generation of a drag acceleration profile as the satisfaction of trajectory conditions during the entry flight. The reference trajectory is parameterized and optimized as piecewise linear functions of the velocity. A regularization technique is employed to achieve desired properties of the optimal drag profile. The regularized problem has smoothness properties and the minimization of performance index then prevents the drag acceleration from varying too fast, thus eliminating discontinuities. This paper shows the trajectory control using the simple control law as well as the information of reference drag acceleration.

  • PDF

An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

  • Woo, Jin;Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.195-204
    • /
    • 2010
  • The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.