• Title/Summary/Keyword: Transgenic Animal

Search Result 533, Processing Time 0.026 seconds

Growth Rates of Transgenic Mice Containing Growth Hormone Receptor Gene

  • Kim, H. J;K. Naruse;S. M. Chang;K. S. Im;Lee, S. H.;Park, C. S.;D. I. Jin
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.333-338
    • /
    • 2003
  • Transgenic mice containing GH Receptor (GHR) gene fused to metallothionein promoter were analyzed to evaluate effect of GHR expression on growth in vivo. Three founder mice lines contained copies of GHR transgene and transmitted these genes into F$_1$ and F$_2$ progenies. The mRNA expression of transgene was identified using RT-PCR with GHR genes in tissues. To analyze the effects of transgenes on growth performance, body weights of pups were measured at 4, 10 and 14 weeks after birth. The body weight of transgenic mice was higher compared with that of non-transgenic control mice regardless of sex (P<0.05). Body weights between transgenic and non-transgenic mice were increased with aging. Overall, GHR transgenic mice tended to grow about 10 to 15 % faster than non-transgenic mice without any pathological defects.

Transgenic Animal Model in Reproductive Medicine

  • Han, Yong-Man;Lee, Gyeong-Gwang
    • 대한생식의학회:학술대회논문집
    • /
    • 2000.02a
    • /
    • pp.229-234
    • /
    • 2000
  • Transgenic animal technology has provided new opportunities in many aspects of biotechnology and medicine during two decades. Several gene delivery systems including pronuclear injection, retroviral vectors, sperm vectors, and somatic cell cloning have been tried to generate new functional animals. In the future somatic cell cloning technology will be a major method in the transgenic animal production. Many factors enhancing overall transgenic efficiency should be overcome to facilitate the industrial applications of transgenic technology. Transgenic animal technology has settled down in some areas of the medicine, especially the mass production of pharmaceutical proteins and xenotransplantation. Thus, animal biotechnology will contribute to welfare of human being.

  • PDF

Increased of the Red Blood Cell in Peripheral Plasma of Transgenic Pigs Harboring hEPO Gene

  • Park, J.K.;Jeon, I.S.;Lee, Y.K.;Lee, P.Y.;Kim, S.W.;Kim, S.J.;Lee, H.G.;Han, J.H.;Park, C.G.;Min, K.S.;Lee, C.H.;Lee, H.T.;Chang, W.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.317-324
    • /
    • 2003
  • The present study were performed to analysis the hematocrit and the red blood cells content into the blood plasma of the transgenic pigs harboring recombinent human erythropoietin gene (rhEPO). Mouse whey acidic protein (mWAP) linked to rhEPO gene was microinjected into pronuclei of porcine one-cell zygotes. After delivered of offspring, PCR analyses identified one mWAP-rhEPO transgenic founder offspring(F$_{0}$). The first generation of transgenic pig (F$_{0}$) harboring mWAP-hEPO appeared to be a male, and the second generation (F$_1$) pigs were made by natural mating of F$_{0}$ with domestic swine, and male and female transgenic pigs (F$_1$) were identified by PCR. The blood samples from transgenic and normal pigs were collected for 50 days during lactation and were counted the red blood cell (RBC) numbers and Hematocrit (HCT) content into the blood. The transgenic pigs expressing rhEPO in their blood gave rise to higher RBC numbers and HCT contents than control animals. rhEPO was secreted both in the blood and milk of genetically engineered pigs harboring rhEPO gene. Therefore, this study provides a model regarding the production of transgenic pig carrying hEPO transgene for biomedical research.earch.

Germ Cell Apoptosis in the Testis of Transgenic Pigs

  • Chung, Hak-Jae;Kim, Bong-Ki;Ko, Yeoung-Gyu;Woo, Jei-Hyun;Kim, Jeom-Soon;Jung, Jin-Kwan;Chang, Won-Kyong
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.233-233
    • /
    • 2004
  • PURPOSE: Gene expression and apoptosis in testicular germ cells has been demonstrated in many transgenic animals. However, little is known about the transgenic pig and rates of apoptosis during spermatogenesis. METHODS : Morphological and biochemical features of apoptosis reported in other species were used to confirm that the TdT-mediated dUTP Nick end labeling (TUNEL) assay is an acceptable mothos for idendtification and quantification of apoptotic transgenic germ cells in histological tissue section from transgenic pig testis. (omitted)

  • PDF

The Production of Transgenic Livestock and Its Applications

  • Han, Y. M;Lee, K. K.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.381-391
    • /
    • 1999
  • During the last 20 years, transgenic animal technology has provided revolutionary new opportunities in many aspects of agriculture and biotechnology. Several gene delivery systems including pronuclear injection, retroviral vectors, sperm vectors, and somatic cell cloning have developed for making transgenic animals. In the future major improvements in transgenic animal generation will be mainly covered by somatic cell cloning technology. Many factors affecting integration frequency and expression of the transgenes should be overcome to facilitate the industrial applications of transgenic technology. Transgenic animal technology has settled down in some areas of the biotechnology, especially the mass production of valuable human proteins and xenotransplantation. In the 21st century animal biotechnology will further contribute to welfare of human being.

  • PDF

Comparison of hematological values of conventional pigs and transgenic pigs supressed in immune rejection response (일반돼지와 면역 거부반응이 억제된 형질전환돼지의 혈액 성상 비교)

  • Cho, Ara;Oh, Keon Bong;Roh, Jae-Hee;Jung, Young-Hun;Jung, Suk-Han;Kang, Myoung-Geum;Kim, Mi-Suk;Do, Yoon Jung;Oh, Sang-Ik;Kim, Eunju;Yoo, Jae Gyu;Choe, Changyong
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.193-200
    • /
    • 2019
  • Blood test is a useful tool in establishing medical treatment for livestock. It provides information such as disease diagnosis, treatment effects, prognostic judgment, and health status. This study compared the value of erythrocytes and leukocytes among conventional, transgenic miniature, and transgenic conventional pigs aged six months to 24 months. Further, it analyzed the aspects of hematological value changes according to the pigs' ages. As a result, the number of red blood cells (RBC), which include hemoglobin, and hematocrit, and the number of white blood cells (WBC), which include neutrophils, and lymphocyte, were high among transgenic miniature pigs, compared with the conventional and transgenic conventional pigs. Conventional pigs showed similar values of RBC and WBC regardless of transgenesis. In comparing their age, the RBC decreased as the age increased compared with the pigs among all the three groups aged of 6~12 months. On the other hand, WBC and neutrophils showed no significant difference regardless of different ages among all the three groups. However, various counts in RBC and WBC were mostly found to be higher in each age in transgenic miniature pigs than in conventional and transgenic conventional pigs. The results of this study show that the values of RBC and WBC were generally higher in transgenic miniature pigs than in conventional and transgenic conventional pigs. Based on this research, hematological values can be widely used in diagnosing diseases or checking the health status of transgenic pigs that are used as disease models, organ transplant source and alike.

Cellulose Digestibility Increased with CelD Transgenic Pigs

  • Park, J.K.;Lee, Y.K.;Lee, P.Y.;Kim, S.W.;Kim, S.J.;Lee, H.G.;Han, J.H.;Chung, H.K.;Park, C.G.;Chung, Y.H.;Lee, C.H.;Lee, H.T.;Chang, W.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2003
  • This study was performed to test the cellulose digestibility using the transgenic pigs harboring cellulose degradation gene D (CelD). After delivered offsprings between normal pig and transgenic swine, DNA was isolated from piglets tail for PCR analysis. In first generation, five out of 65 piglets showed CelD positive. Unfortunately, four CelD-positive pigs were died during growing, but one survived pig was used as a transgenic founder to produce F$_1$ descendents. Among 3 F$_1$ transgenic pigs produced, one died and the remaining two pigs were used to test the fiber digest efficiency. An assorted feed was composite of 5% fiber with other ingredients. The feed of 3 kg per day was provided to the pigs including transgenic founders and littermate controls. The manure quantity was measured daily for a month, and all manures were dried for three days to analysis nitrogen, phosphate and fiber concentrations. The fiber digestion efficiencies of the transgenic F$_1$ pigs showed approximately 10% higher than those of control pigs. Fiber digestion was not greatly improved in transgenic pigs as it had been expected approximately 30%. Nitrogen concentration of transgenic pig's manure was slowly decreased compare to the control pigs. Because there were only two transgenic pigs tested, a large number of transgenic pigs may be necessary to obtain more reliable data. Breeding of animals to obtain sufficient transgenic pigs subjected for a further study is on progress. Taken together, this study demonstrated successful production of transgenic pigs with increase of cellulose digestibility in the porcine feed.

Characterization of Brain Tumor Cell using Vasopressin-SV40 T Ag Transgenic Mouse

  • Kim, Sung-Hyun;Lee, Eun-Ju;Kim, Myoung-Ok;Park, Jun-Hong;Kyoungin-Cho;Jung, Boo-Kyung;Kim, Hee-Chul;Hwang, Sol-Ha;Lee, Hoon-Taek
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.44-44
    • /
    • 2003
  • In previous reports, pVPSV.IGR2.1 transgenic mouse were described that brain tumor and lymphoma by reason of Vasopressin-SV40 T antigen. In this study, we produced pVPSV.IGR3.6 transgenic mouse that used pVPSV.IGR3.6 vector. Expression of transgene was vary different in transgenic mouse. We obtained 6 transgenic mouse line, moreover they had died at the age of 2~6 weeks without transmitting the transgene to their offspring, and had tumorigenesis on same location with pVPSV.IGR2.1 transgenic mouse. Only a founder mouse was investigated for expression of fusion gene. Here we extended this transgenic approach to the study of tumor progression. From the mouse, we confirmed brain tumor cell, after then cultured for investigate characterization. In this report, we demonstrate that reduction of survival rate in transgenic mouse fused vasopressin gene length, acquisition of brain tumor cell, composition with astrocyte cells and neuronal cells. Finally, cells had no change with increase of passage.

  • PDF

Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken

  • Byun, Sung June;Ji, Mi-Ran;Jang, Ye-Jin;Hwang, A-In;Chung, Hee Kyoung;Kim, Jeom Sun;Kim, Kyung-Woon;Chung, Hak-Jae;Yang, Byoung-Chul;Jeon, Iksoo;Park, Jin-Ki;Yoo, Jae Gyu;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.404-409
    • /
    • 2013
  • Extracellular superoxide dismutase (EC-SOD) is a metallo-protein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white.

Growth Regulation in IGF-1 Receptor Transgenic Mice

  • Kim Hyun-Joo;Shin Young-Min;Chang Suk-Min;Park Chang-Sik;Jin Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.93-97
    • /
    • 2006
  • To study the signaling effect of insulin-like growth factor-I(IGF-1), transgenic mice containing IGF-1 Receptor (IGF-1R) cDNA fused to metallothionein promoter were produced by DNA microinjection into the pronucleus of mouse zygote. Three founders were produced with transgenic mice containing IGF-1R gene. Transgenic mice lines contained approximately $4{\sim}20$ copies of transgenes per cell and transmission of this gene into the progeny with Mendelian manner were determined. The founder mice were mated with normal mice to produce $F_1$ mice and then $F_2$ mice. Transmission rates of IGF-1R transgene in the progeny mice were $25{\sim}60%$ in $F_1$ generation and $40{\sim}50%$ in $F_2$ generation. The mRNA expression of IGF-1R transgene in liver was analyzed using RT-PCR for IGF-1R gene in liver. When body weights of transgenic pups were measured during 4, 10 and 14 weeks after birth, IGF-1R transgenic mice grew faster than non transgenic littermates. This study indicated that growth regulation by IGF-1 signaling through IGF-1R can be elucidated using IGF-1R transgenic mice.