• Title/Summary/Keyword: Transient radiation

Search Result 169, Processing Time 0.026 seconds

A Study of CMOS Device Latch-up Model with Transient Radiation (과도방사선에 의한 CMOS 소자 Latch-up 모델 연구)

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Min-Su;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.422-426
    • /
    • 2012
  • Transient radiation is emitted during a nuclear explosion. Transient radiation causes a fatal error in the CMOS circuit as a Upset and Latch-up. In this paper, transient radiation NMOS, PMOS, INVERTER SPICE model was proposed on the basisi of transient radiation effects analysis using TCAD(Technology Computer Aided Design). Photocurrent generated from the MOSFET internal PN junction was expressed to the current source and Latch-up phenomenon in the INVERTER was expressed to parasitic thyristor for the transient radiation SPICE model. For example, the proposed transient radiation SPICE model was applied to CMOS NAND circuit. SPICE simulated characteristics were similar to the TCAD simulation results. Simulation time was reduced to 120 times compared to TCAD simulation.

New Approach for Transient Radiation SPICE Model of CMOS Circuit

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Jong-Yeol;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1182-1187
    • /
    • 2013
  • Transient radiation is emitted during a nuclear explosion and causes fatal errors as upset and latch-up in CMOS circuits. This paper proposes the transient radiation SPICE models of NMOS, PMOS, and INVERTER based on the transient radiation analysis using TCAD (Technology Computer Aided Design). To make the SPICE model of a CMOS circuit, the photocurrent in the PN junction of NMOS and PMOS was replaced as current source, and a latch-up phenomenon in the inverter was applied using a parasitic thyristor. As an example, the proposed transient radiation SPICE model was applied to a CMOS NAND circuit. The CMOS NAND circuit was simulated by SPICE and TCAD using the 0.18um CMOS process model parameter. The simulated results show that the SPICE results were similar to the TCAD simulation and the test results of commercial CMOS NAND IC. The simulation time was reduced by 120 times compared to the TCAD simulation.

Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System (접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구)

  • Lee, Ju-Han;Seo, Joo-Hyun;Oh, Sang-June;Lee, Jin-Kyu;Seo, Tae-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Modeling and Simulation for Transient Pulse Gamma-ray Effects on Semiconductor Devices (반도체 소자의 과도펄스감마선 영향 모델링 및 시뮬레이션)

  • Lee, Nam-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1611-1614
    • /
    • 2010
  • The explosion of a nuclear weapon radiates a gamma-ray in the form of a transient pulse. If the gamma-ray introduces to semiconductor devices, much Electron-Hole Pairs(EHPs) are generated in depletion region of the devices[7]. as a consequence of that, high photocurrent is created and causes upset, latchup and burnout of semiconductor devices[8]. This phenomenon is known for Transient Radiation Effects on Electronics(TREE), also called dose-rate effects. In this paper 3D structure of inverter and NAND gate device was designed and transient pulse gamma-ray was modeled. So simulation for transient radiation effect on inverter and NAND gate was accomplished and mechanism for upset and latchup was analyzed.

Simulation for Dose-Rate Latchup by Transient Radiation Pulse in CMOS Device (CMOS 소자에서 과도방사선펄스에 의한 Dose-Rate Latchup 모의실험)

  • Lee, Hyun-Jin;Lee, Nam-Ho;Hwang, Young-Gwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1185-1186
    • /
    • 2008
  • A nuclear explosion emits a transient radiation pulse like gamma rays. Gamma rays have a high energy and cause unexpected effects in semiconductor devices. These effects are mainly referred to dose-rate latcup and dose-rate upset. By transient radiation pulse in CMOS devices, dose-rate latchup is simulated in this paper.

  • PDF

The Study of Transient Radiation Effects on Commercial Electronic Devices (즉발감마선에 의한 상용전자소자의 피해현상분석 연구)

  • Oh, Seugn-Chan;Lee, Nam-Ho;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1448-1453
    • /
    • 2012
  • In this study, we carried out transient radiation test for identify failure situation by a transient radiation effect on operational amplifier devices. This experiments were carried out using a 60 MeV electron beam pulse of the LINAC(Linear Accelerator) facility in the Pohang Accelerator Laboratory. In this test, we has found that a serious failure as a burn-out effect due to overcurrent on the partial electronic devices.

Analysis of Transient Heat Transfer Characteristics of a Receiver for a Dish Type Solar Thermal System by using CFD (CFD를 이용한 접시형 태양열 집열기의 Transient 열전달 성능 해석)

  • Oh, Sang-June;Lee, Ju-Han;Seo, Joo-Hyun;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.167-170
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Numerical Analysis on the Transient Cooling Characteristics of an Infrared Detector Cryochamber (적외선 센서 냉각용 극저온 용기의 과도 냉각 특성에 관한 수치해석)

  • 이정훈;김호영;강병하
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.68-72
    • /
    • 2002
  • This work investigates the transient cooling characteristics of an Infrared (IR) detector cryochamber, which has a critical effect on the cooling load. The current thermal modeling considers the conduction heat transfer through a cold well. the gaseous conduction due to outgassing. and the radiation heat transfer. The transient cooling Performance. i.e. the penetration depth and cooling load, is determined using a finite difference method. It is found that the penetration depth increases as the bore conductivity increases. Gaseous conduction and radiation hardly affect the penetration depth. The transient cooling load increases as the bore conductivity increases. The effects of gaseous conduction and radiation on transient heat transfer are weak at initial stages of cooling. However, their effects become significant as the cooling Process Proceeds.

Computational Heat Transfer Analysis of Dish Type Solar Receiver Using the Transient model (CFD를 이용한 접시형 태양열 집열기의 과도 열전달 모델 해석)

  • Oh, Sang-June;Lee, Ju-Han;Seo, Joo-Hyun;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.72-79
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical a. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing of the experimental and the numerical results, results of both are in good agreement. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

A Nuclear Event Detectors Fabrication and Verification for Detection of a Transient Radiation (과도방사선 검출을 위한 핵폭발 검출기 제작 및 검증)

  • Jeong, Sang-Hun;Lee, Seung-Min;Lee, Nam-Ho;Kim, Ha-Chul;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.639-642
    • /
    • 2013
  • In this paper, proposed NED(nuclear event detectors) for detection of a transient radiation. Nuclear event detector was blocked of power temporary for defence of critical damage at a electric device when a induced transient radiation. Conventional NED consist of BJT, resistors and capacitors. The NED supply voltage of 5V and MCM(Multi Chip Module) structures. The proposed NED were designed for low supply voltage using 0.18um CMOS process. The response time of proposed NED was 34.8ns. In addition, pulse radiation experiments using a electron beam accelerator, the output signal has occurred.